972 resultados para Bayesian modelling
Resumo:
Coping with an ageing population is a major concern for healthcare organisations around the world. The average cost of hospital care is higher than social care for older and terminally ill patients. Moreover, the average cost of social care increases with the age of the patient. Therefore, it is important to make efficient and fair capacity planning which also incorporates patient centred outcomes. Predictive models can provide predictions which their accuracy can be understood and quantified. Predictive modelling can help patients and carers to get the appropriate support services, and allow clinical decision-makers to improve care quality and reduce the cost of inappropriate hospital and Accident and Emergency admissions. The aim of this study is to provide a review of modelling techniques and frameworks for predictive risk modelling of patients in hospital, based on routinely collected data such as the Hospital Episode Statistics database. A number of sub-problems can be considered such as Length-of-Stay and End-of-Life predictive modelling. The methodologies in the literature are mainly focused on addressing the problems using regression methods and Markov models, and the majority lack generalisability. In some cases, the robustness, accuracy and re-usability of predictive risk models have been shown to be improved using Machine Learning methods. Dynamic Bayesian Network techniques can represent complex correlations models and include small probabilities into the solution. The main focus of this study is to provide a review of major time-varying Dynamic Bayesian Network techniques with applications in healthcare predictive risk modelling.
Resumo:
Forest models are tools for explaining and predicting the dynamics of forest ecosystems. They simulate forest behavior by integrating information on the underlying processes in trees, soil and atmosphere. Bayesian calibration is the application of probability theory to parameter estimation. It is a method, applicable to all models, that quantifies output uncertainty and identifies key parameters and variables. This study aims at testing the Bayesian procedure for calibration to different types of forest models, to evaluate their performances and the uncertainties associated with them. In particular,we aimed at 1) applying a Bayesian framework to calibrate forest models and test their performances in different biomes and different environmental conditions, 2) identifying and solve structure-related issues in simple models, and 3) identifying the advantages of additional information made available when calibrating forest models with a Bayesian approach. We applied the Bayesian framework to calibrate the Prelued model on eight Italian eddy-covariance sites in Chapter 2. The ability of Prelued to reproduce the estimated Gross Primary Productivity (GPP) was tested over contrasting natural vegetation types that represented a wide range of climatic and environmental conditions. The issues related to Prelued's multiplicative structure were the main topic of Chapter 3: several different MCMC-based procedures were applied within a Bayesian framework to calibrate the model, and their performances were compared. A more complex model was applied in Chapter 4, focusing on the application of the physiology-based model HYDRALL to the forest ecosystem of Lavarone (IT) to evaluate the importance of additional information in the calibration procedure and their impact on model performances, model uncertainties, and parameter estimation. Overall, the Bayesian technique proved to be an excellent and versatile tool to successfully calibrate forest models of different structure and complexity, on different kind and number of variables and with a different number of parameters involved.
Resumo:
Prediction at ungauged sites is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. Regression models relate physiographic and climatic basin characteristics to flood quantiles, which can be estimated from observed data at gauged sites. However, these models assume linear relationships between variables Prediction intervals are estimated by the variance of the residuals in the estimated model. Furthermore, the effect of the uncertainties in the explanatory variables on the dependent variable cannot be assessed. This paper presents a methodology to propagate the uncertainties that arise in the process of predicting flood quantiles at ungauged basins by a regression model. In addition, Bayesian networks were explored as a feasible tool for predicting flood quantiles at ungauged sites. Bayesian networks benefit from taking into account uncertainties thanks to their probabilistic nature. They are able to capture non-linear relationships between variables and they give a probability distribution of discharges as result. The methodology was applied to a case study in the Tagus basin in Spain.
Resumo:
The generation of very short range forecasts of precipitation in the 0-6 h time window is traditionally referred to as nowcasting. Most existing nowcasting systems essentially extrapolate radar observations in some manner, however, very few systems account for the uncertainties involved. Thus deterministic forecast are produced, which have a limited use when decisions must be made, since they have no measure of confidence or spread of the forecast. This paper develops a Bayesian state space modelling framework for quantitative precipitation nowcasting which is probabilistic from conception. The model treats the observations (radar) as noisy realisations of the underlying true precipitation process, recognising that this process can never be completely known, and thus must be represented probabilistically. In the model presented here the dynamics of the precipitation are dominated by advection, so this is a probabilistic extrapolation forecast. The model is designed in such a way as to minimise the computational burden, while maintaining a full, joint representation of the probability density function of the precipitation process. The update and evolution equations avoid the need to sample, thus only one model needs be run as opposed to the more traditional ensemble route. It is shown that the model works well on both simulated and real data, but that further work is required before the model can be used operationally. © 2004 Elsevier B.V. All rights reserved.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The fisheries for mackerel scad, Decapterus macarellus, are particularly important in Cape Verde, constituting almost 40% of total catches at the peak of the fishery in 1997 and 1998 ( 3700 tonnes). Catches have been stable at a much lower level of about 2 100 tonnes in recent years. Given the importance of mackerel scad in terms of catch weight and local food security, there is an urgent need for updated assessment. Stock assessment was carried out using a Bayesian approach to biomass dynamic modelling. In order to tackle the problem of a non-informative CPUE series, the intrinsic rate of increase, r, was estimated separately, and the ratio B-0/X, initial biomass relative to carrying capacity, was assumed based on available information. The results indicated that the current level of fishing is sustainable. The probability of collapse is low, particularly in the short-term, and it is likely that biomass may increase further above B-msy, indicating a healthy stock level. It would appear that it is relatively safe to increase catches even up to 4000 tonnes. However, the marginal posterior of r was almost identical to the prior, indicating that there is relatively low information content in CPUE. This was also the case in relation to B-0/X There have been substantial increases in fishing efficiency, which have not been adequately captured by the measure used for effort (days or trips), implying that the results may be overly optimistic and should be considered preliminary. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Bayesian Belief Networks (BBNs) are emerging as valuable tools for investigating complex ecological problems. In a BBN, the important variables in a problem are identified and causal relationships are represented graphically. Underpinning this is the probabilistic framework in which variables can take on a finite range of mutually exclusive states. Associated with each variable is a conditional probability table (CPT), showing the probability of a variable attaining each of its possible states conditioned on all possible combinations of it parents. Whilst the variables (nodes) are connected, the CPT attached to each node can be quantified independently. This allows each variable to be populated with the best data available, including expert opinion, simulation results or observed data. It also allows the information to be easily updated as better data become available ----- ----- This paper reports on the process of developing a BBN to better understand the initial rapid growth phase (initiation) of a marine cyanobacterium, Lyngbya majuscula, in Moreton Bay, Queensland. Anecdotal evidence suggests that Lyngbya blooms in this region have increased in severity and extent over the past decade. Lyngbya has been associated with acute dermatitis and a range of other health problems in humans. Blooms have been linked to ecosystem degradation and have also damaged commercial and recreational fisheries. However, the causes of blooms are as yet poorly understood.