939 resultados para Bayesian belief network
Resumo:
Utilities worldwide are focused on supplying peak electricity demand reliably and cost effectively, requiring a thorough understanding of all the factors influencing residential electricity use at peak times. An electricity demand reduction project based on comprehensive residential consumer engagement was established within an Australian community in 2008, and by 2011, peak demand had decreased to below pre-intervention levels. This paper applied field data discovered through qualitative in-depth interviews of 22 residential households at the community to a Bayesian Network complex system model to examine whether the system model could explain successful peak demand reduction in the case study location. The knowledge and understanding acquired through insights into the major influential factors and the potential impact of changes to these factors on peak demand would underpin demand reduction intervention strategies for a wider target group.
Resumo:
Being able to accurately predict the risk of falling is crucial in patients with Parkinson’s dis- ease (PD). This is due to the unfavorable effect of falls, which can lower the quality of life as well as directly impact on survival. Three methods considered for predicting falls are decision trees (DT), Bayesian networks (BN), and support vector machines (SVM). Data on a 1-year prospective study conducted at IHBI, Australia, for 51 people with PD are used. Data processing are conducted using rpart and e1071 packages in R for DT and SVM, con- secutively; and Bayes Server 5.5 for the BN. The results show that BN and SVM produce consistently higher accuracy over the 12 months evaluation time points (average sensitivity and specificity > 92%) than DT (average sensitivity 88%, average specificity 72%). DT is prone to imbalanced data so needs to adjust for the misclassification cost. However, DT provides a straightforward, interpretable result and thus is appealing for helping to identify important items related to falls and to generate fallers’ profiles.
Resumo:
Dynamic Bayesian Networks (DBNs) provide a versatile platform for predicting and analysing the behaviour of complex systems. As such, they are well suited to the prediction of complex ecosystem population trajectories under anthropogenic disturbances such as the dredging of marine seagrass ecosystems. However, DBNs assume a homogeneous Markov chain whereas a key characteristics of complex ecosystems is the presence of feedback loops, path dependencies and regime changes whereby the behaviour of the system can vary based on past states. This paper develops a method based on the small world structure of complex systems networks to modularise a non-homogeneous DBN and enable the computation of posterior marginal probabilities given evidence in forwards inference. It also provides an approach for an approximate solution for backwards inference as convergence is not guaranteed for a path dependent system. When applied to the seagrass dredging problem, the incorporation of path dependency can implement conditional absorption and allows release from the zero state in line with environmental and ecological observations. As dredging has a marked global impact on seagrass and other marine ecosystems of high environmental and economic value, using such a complex systems model to develop practical ways to meet the needs of conservation and industry through enhancing resistance and/or recovery is of paramount importance.
Resumo:
This doctoral dissertation introduces an algorithm for constructing the most probable Bayesian network from data for small domains. The algorithm is used to show that a popular goodness criterion for the Bayesian networks has a severe sensitivity problem. The dissertation then proposes an information theoretic criterion that avoids the problem.
Resumo:
162 p.
Resumo:
Supply chain tracking information is one of the main levers for achieving operational efficiency. RFID technology and the EPC Network can deliver serial-level product information that was never before available. However, these technologies still fail to meet the managers' visibility requirements in full, since they provide information about product location at specific time instances only. This paper proposes a model that uses the data provided by the EPC Network to deliver enhanced tracking information to the final user. Following a Bayesian approach, the model produces realistic ongoing estimates about the current and future location of products across a supply network, taking into account the characteristics of the product behavior and the configuration of the data collection points. These estimates can then be used to optimize operational decisions that depend on product availability at different locations. The enhancement of tracking information quality is highlighted through an example. © 2009 IFAC.
Resumo:
A common objective in learning a model from data is to recover its network structure, while the model parameters are of minor interest. For example, we may wish to recover regulatory networks from high-throughput data sources. In this paper we examine how Bayesian regularization using a Dirichlet prior over the model parameters affects the learned model structure in a domain with discrete variables. Surprisingly, a weak prior in the sense of smaller equivalent sample size leads to a strong regularization of the model structure (sparse graph) given a sufficiently large data set. In particular, the empty graph is obtained in the limit of a vanishing strength of prior belief. This is diametrically opposite to what one may expect in this limit, namely the complete graph from an (unregularized) maximum likelihood estimate. Since the prior affects the parameters as expected, the prior strength balances a "trade-off" between regularizing the parameters or the structure of the model. We demonstrate the benefits of optimizing this trade-off in the sense of predictive accuracy.
Resumo:
P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, functions as a biological barrier by extruding cytotoxic agents out of cells, resulting in an obstacle in chemotherapeutic treatment of cancer. In order to aid in the development of potential P-gp inhibitors, we constructed a quantitative structure-activity relationship (QSAR) model of flavonoids as P-gp inhibitors based on Bayesian-regularized neural network (BRNN). A dataset of 57 flavonoids collected from a literature binding to the C-terminal nucleotide-binding domain of mouse P-gp was compiled. The predictive ability of the model was assessed using a test set that was independent of the training set, which showed a standard error of prediction of 0.146 +/- 0.006 (data scaled from 0 to 1). Meanwhile, two other mathematical tools, back-propagation neural network (BPNN) and partial least squares (PLS) were also attempted to build QSAR models. The BRNN provided slightly better results for the test set compared to BPNN, but the difference was not significant according to F-statistic at p = 0.05. The PLS failed to build a reliable model in the present study. Our study indicates that the BRNN-based in silico model has good potential in facilitating the prediction of P-gp flavonoid inhibitors and might be applied in further drug design.
Resumo:
R. Daly and Q. Shen. Methods to accelerate the learning of bayesian network structures. Proceedings of the Proceedings of the 2007 UK Workshop on Computational Intelligence.
Resumo:
R. Daly, Q. Shen and S. Aitken. Speeding up the learning of equivalence classes of Bayesian network structures. Proceedings of the 10th International Conference on Artificial Intelligence and Soft Computing, pages 34-39.
Resumo:
R. Daly, Q. Shen and S. Aitken. Using ant colony optimisation in learning Bayesian network equivalence classes. Proceedings of the 2006 UK Workshop on Computational Intelligence, pages 111-118.