914 resultados para Barbara Johnstone: Qualitative methods in sociolinguistics
Resumo:
One of the most important problems in optical pattern recognition by correlation is the appearance of sidelobes in the correlation plane, which causes false alarms. We present a method that eliminate sidelobes of up to a given height if certain conditions are satisfied. The method can be applied to any generalized synthetic discriminant function filter and is capable of rejecting lateral peaks that are even higher than the central correlation. Satisfactory results were obtained in both computer simulations and optical implementation.
Resumo:
The objective of this study was to estimate the potential of method restriction as a public health strategy in suicide prevention. Data from the Swiss Federal Statistical Office and the Swiss Institutes of Forensic Medicine from 2004 were gathered and categorized into suicide submethods according to accessibility to restriction of means. Of suicides in Switzerland, 39.2% are accessible to method restriction. The highest proportions were found in private weapons (13.2%), army weapons (10.4%), and jumps from hot-spots (4.6%). The presented method permits the estimation of the suicide prevention potential of a country by method restriction and the comparison of restriction potentials between suicide methods. In Switzerland, reduction of firearm suicides has the highest potential to reduce the total number of suicides.
Resumo:
This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods' results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.
Resumo:
Yksi keskeisimmistä tehtävistä matemaattisten mallien tilastollisessa analyysissä on mallien tuntemattomien parametrien estimointi. Tässä diplomityössä ollaan kiinnostuneita tuntemattomien parametrien jakaumista ja niiden muodostamiseen sopivista numeerisista menetelmistä, etenkin tapauksissa, joissa malli on epälineaarinen parametrien suhteen. Erilaisten numeeristen menetelmien osalta pääpaino on Markovin ketju Monte Carlo -menetelmissä (MCMC). Nämä laskentaintensiiviset menetelmät ovat viime aikoina kasvattaneet suosiotaan lähinnä kasvaneen laskentatehon vuoksi. Sekä Markovin ketjujen että Monte Carlo -simuloinnin teoriaa on esitelty työssä siinä määrin, että menetelmien toimivuus saadaan perusteltua. Viime aikoina kehitetyistä menetelmistä tarkastellaan etenkin adaptiivisia MCMC menetelmiä. Työn lähestymistapa on käytännönläheinen ja erilaisia MCMC -menetelmien toteutukseen liittyviä asioita korostetaan. Työn empiirisessä osuudessa tarkastellaan viiden esimerkkimallin tuntemattomien parametrien jakaumaa käyttäen hyväksi teoriaosassa esitettyjä menetelmiä. Mallit kuvaavat kemiallisia reaktioita ja kuvataan tavallisina differentiaaliyhtälöryhminä. Mallit on kerätty kemisteiltä Lappeenrannan teknillisestä yliopistosta ja Åbo Akademista, Turusta.
Resumo:
Agile software development methods are attempting to provide an answer to the software development industry's need of lighter weight, more agile processes that offer the possibility to react to changes during the software development process. The objective of this thesis is to analyze and experiment the possibility of using agile methods or practices also in small software projects, even in projects containing only one developer. In the practical part of the thesis a small software project was executed with some agile methods and practices that in the theoretical part of the thesis were found possible to be applied to the project. In the project a Bluetooth proxy application that is run in the S60 smartphone platform and PC was developed further to contain some new features. As a result it was found that certain agile practices can be useful even in the very small projects. The selection of the suitable practices depends on the project and the size of the project team.
Resumo:
This thesis gives an overview of the use of the level set methods in the field of image science. The similar fast marching method is discussed for comparison, also the narrow band and the particle level set methods are introduced. The level set method is a numerical scheme for representing, deforming and recovering structures in an arbitrary dimensions. It approximates and tracks the moving interfaces, dynamic curves and surfaces. The level set method does not define how and why some boundary is advancing the way it is but simply represents and tracks the boundary. The principal idea of the level set method is to represent the N dimensional boundary in the N+l dimensions. This gives the generality to represent even the complex boundaries. The level set methods can be powerful tools to represent dynamic boundaries, but they can require lot of computing power. Specially the basic level set method have considerable computational burden. This burden can be alleviated with more sophisticated versions of the level set algorithm like the narrow band level set method or with the programmable hardware implementation. Also the parallel approach can be used in suitable applications. It is concluded that these methods can be used in a quite broad range of image applications, like computer vision and graphics, scientific visualization and also to solve problems in computational physics. Level set methods and methods derived and inspired by it will be in the front line of image processing also in the future.
Resumo:
Vaatimusmäärittely on tärkeä vaihe ohjelmistotuotannossa, koska virheelliset ja puutteelliset asiakasvaatimukset vaikuttavat huomattavasti asiakkaan tyytymättömyyteen ohjelmistotuotteessa. Ohjelmistoinsinöörit käyttävät useita erilaisia menetelmiä ja tekniikoita asiakasvaatimusten kartoittamiseen. Erilaisia tekniikoita asiakasvaatimusten keräämiseen on olemassa valtava määrä.Diplomityön tavoitteena oli parantaa asiakasvaatimusten keräämisprosessia ohjelmistoprojekteissa. Asiakasvaatimusten kartoittamiseen käytettävien tekniikoiden arvioinnin perusteella kehitettiin parannettu asiakasvaatimusten keräämisprosessi. Kehitetyn prosessin testaamiseksi ja parantamiseksi järjestettiin ryhmätyöistuntoja liittyen todellisiin ohjelmistokehitysprojekteihin. Tuloksena vaatimusten kerääminen eri sidosryhmiltä nopeutui ja tehostui. Prosessi auttoi muodostamaan yleisen kuvan kehitettävästä ohjelmistosta, prosessin avulla löydettiin paljon ideoita ja prosessi tehosti ideoiden analysointia ja priorisointia. Prosessin suurin kehityskohde oli fasilitaattorin ja osallistujien valmistautumisessa ryhmätyöistuntoihin etukäteen.
Resumo:
The purpose of the research is to define practical profit which can be achieved using neural network methods as a prediction instrument. The thesis investigates the ability of neural networks to forecast future events. This capability is checked on the example of price prediction during intraday trading on stock market. The executed experiments show predictions of average 1, 2, 5 and 10 minutes’ prices based on data of one day and made by two different types of forecasting systems. These systems are based on the recurrent neural networks and back propagation neural nets. The precision of the predictions is controlled by the absolute error and the error of market direction. The economical effectiveness is estimated by a special trading system. In conclusion, the best structures of neural nets are tested with data of 31 days’ interval. The best results of the average percent of profit from one transaction (buying + selling) are 0.06668654, 0.188299453, 0.349854787 and 0.453178626, they were achieved for prediction periods 1, 2, 5 and 10 minutes. The investigation can be interesting for the investors who have access to a fast information channel with a possibility of every-minute data refreshment.
Resumo:
In metallurgic plants a high quality metal production is always required. Nowadays soft computing applications are more often used for automation of manufacturing process and quality control instead of mechanical techniques. In this thesis an overview of soft computing methods presents. As an example of soft computing application, an effective model of fuzzy expert system for the automotive quality control of steel degassing process was developed. The purpose of this work is to describe the fuzzy relations as quality hypersurfaces by varying number of linguistic variables and fuzzy sets.