978 resultados para Bananas Genetic engineering
Resumo:
P>Human immunodeficiency virus (HIV)-1 protease is a known target of CD8+ T cell responses, but it is the only HIV-1 protein in which no fully characterized HIV-1 protease CD4 epitopes have been identified to date. We investigated the recognition of HIV-1 protease by CD4+ T cells from 75 HIV-1-infected, protease inhibitor (PI)-treated patients, using the 5,6-carboxyfluorescein diacetate succinimidyl ester-based proliferation assay. In order to identify putative promiscuous CD4+ T cell epitopes, we used the TEPITOPE algorithm to scan the sequence of the HXB2 HIV-1 protease. Protease regions 4-23, 45-64 and 73-95 were identified; 32 sequence variants of the mentioned regions, encoding frequent PI-induced mutations and polymorphisms, were also tested. On average, each peptide bound to five of 15 tested common human leucocyte antigen D-related (HLA-DR) molecules. More than 80% of the patients displayed CD4+ as well as CD8+ T cell recognition of at least one of the protease peptides. All 35 peptides were recognized. The response was not associated with particular HLA-DR or -DQ alleles. Our results thus indicate that protease is a frequent target of CD4+ along with CD8+ proliferative T cell responses by the majority of HIV-1-infected patients under PI therapy. The frequent finding of matching CD4+ and CD8+ T cell responses to the same peptides may indicate that CD4+ T cells provide cognate T cell help for the maintenance of long-living protease-specific functional CD8+ T cells.
Resumo:
Plant transformation is now a core research tool in plant biology and a practical tool for cultivar improvement. There are verified methods for stable introduction of novel genes into the nuclear genomes of over 120 diverse plant species. This review examines the criteria to verify plant transformation; the biological and practical requirements for transformation systems; the integration of tissue culture, gene transfer, selection, and transgene expression strategies to achieve transformation in recalcitrant species; and other constraints to plant transformation including regulatory environment, public perceptions, intellectual property, and economics. Because the costs of screening populations showing diverse genetic changes can far exceed the costs of transformation, it is important to distinguish absolute and useful transformation efficiencies. The major technical challenge facing plant transformation biology is the development of methods and constructs to produce a high proportion of plants showing predictable transgene expression without collateral genetic damage. This will require answers to a series of biological and technical questions, some of which are defined.
Resumo:
This report outlines the development of optimized particle inflow gun (PIG) parameters for producing transgenic sorghum (Sorghum bicolor (L.) Moench). Both transient and stable expression were examined when determining these parameters. The uidA reporter gene (GUS) encoding beta -glucuronidase was used in transient experiments and the green fluorescent protein (GFP) used to monitor stable expression. Initially, optimization was conducted using leaf segments, as the generation of sorghum callus in sufficiently large quantities is time-consuming. Following leaf optimization, experiments were conducted using callus, identifying a high similarity between the two tissue types (r(s) = 0.83). High levels of GUS expression were observed in both leaf and callus material when most distant from the DNA expulsion point, and using a pressure greater than 1800 kPa. A higher level of expression was also observed when the aperture of the helium inlet valve was constricted. Using the optimized conditions (pressure of 2200 kPa, distance to target tissue of 15 cm from the expulsion point, and the aperture of the helium inlet valve at one full turn), three promoters (Ubiquitin, Actin1 and CaMV 35S) were evaluated over a 72-h period using GUS as the reporter gene. A significantly higher number of GUS foci were counted with the Ubiquitin construct over this period, compared to the Actin1 and CaMV 35S constructs. Stable callus sectors (on 2 mg l(-1) bialaphos) with GFP expression were visualized for as long as 6 wk post-bombardment. Using this optimized protocol, several plants were regenerated after having been bombarded with the pAHC20 construct (containing the bar gene), with molecular evidence confirming integration.