951 resultados para Balanced graphs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let n points be placed independently in d-dimensional space according to the density f(x) = A(d)e(-lambda parallel to x parallel to alpha), lambda, alpha > 0, x is an element of R-d, d >= 2. Let d(n) be the longest edge length of the nearest-neighbor graph on these points. We show that (lambda(-1) log n)(1-1/alpha) d(n) - b(n) converges weakly to the Gumbel distribution, where b(n) similar to ((d - 1)/lambda alpha) log log n. We also prove the following strong law for the normalized nearest-neighbor distance (d) over tilde (n) = (lambda(-1) log n)(1-1/alpha) d(n)/log log n: (d - 1)/alpha lambda <= lim inf(n ->infinity) (d) over tilde (n) <= lim sup(n ->infinity) (d) over tilde (n) <= d/alpha lambda almost surely. Thus, the exponential rate of decay alpha = 1 is critical, in the sense that, for alpha > 1, d(n) -> 0, whereas, for alpha <= 1, d(n) -> infinity almost surely as n -> infinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In receive antenna selection (AS), only signals from a subset of the antennas are processed at any time by the limited number of radio frequency (RF) chains available at the receiver. Hence, the transmitter needs to send pilots multiple times to enable the receiver to estimate the channel state of all the antennas and select the best subset. Conventionally, the sensitivity of coherent reception to channel estimation errors has been tackled by boosting the energy allocated to all pilots to ensure accurate channel estimates for all antennas. Energy for pilots received by unselected antennas is mostly wasted, especially since the selection process is robust to estimation errors. In this paper, we propose a novel training method uniquely tailored for AS that transmits one extra pilot symbol that generates accurate channel estimates for the antenna subset that actually receives data. Consequently, the transmitter can selectively boost the energy allocated to the extra pilot. We derive closed-form expressions for the proposed scheme's symbol error probability for MPSK and MQAM, and optimize the energy allocated to pilot and data symbols. Through an insightful asymptotic analysis, we show that the optimal solution achieves full diversity and is better than the conventional method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spanning tree T of a graph G is said to be a tree t-spanner if the distance between any two vertices in T is at most t times their distance in G. A graph that has a tree t-spanner is called a tree t-spanner admissible graph. The problem of deciding whether a graph is tree t-spanner admissible is NP-complete for any fixed t >= 4 and is linearly solvable for t <= 2. The case t = 3 still remains open. A chordal graph is called a 2-sep chordal graph if all of its minimal a - b vertex separators for every pair of non-adjacent vertices a and b are of size two. It is known that not all 2-sep chordal graphs admit tree 3-spanners This paper presents a structural characterization and a linear time recognition algorithm of tree 3-spanner admissible 2-sep chordal graphs. Finally, a linear time algorithm to construct a tree 3-spanner of a tree 3-spanner admissible 2-sep chordal graph is proposed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let G(V, E) be a simple, undirected graph where V is the set of vertices and E is the set of edges. A b-dimensional cube is a Cartesian product l(1) x l(2) x ... x l(b), where each l(i) is a closed interval of unit length on the real line. The cub/city of G, denoted by cub(G), is the minimum positive integer b such that the vertices in G can be mapped to axis parallel b-dimensional cubes in such a way that two vertices are adjacent in G if and only if their assigned cubes intersect. An interval graph is a graph that can be represented as the intersection of intervals on the real line-i.e. the vertices of an interval graph can be mapped to intervals on the real line such that two vertices are adjacent if and only if their corresponding intervals overlap. Suppose S(m) denotes a star graph on m+1 nodes. We define claw number psi(G) of the graph to be the largest positive integer m such that S(m) is an induced subgraph of G. It can be easily shown that the cubicity of any graph is at least log(2) psi(G)]. In this article, we show that for an interval graph G log(2) psi(G)-]<= cub(G)<=log(2) psi(G)]+2. It is not clear whether the upper bound of log(2) psi(G)]+2 is tight: till now we are unable to find any interval graph with cub(G)> (log(2)psi(G)]. We also show that for an interval graph G, cub(G) <= log(2) alpha], where alpha is the independence number of G. Therefore, in the special case of psi(G)=alpha, cub(G) is exactly log(2) alpha(2)]. The concept of cubicity can be generalized by considering boxes instead of cubes. A b-dimensional box is a Cartesian product l(1) x l(2) x ... x l(b), where each I is a closed interval on the real line. The boxicity of a graph, denoted box(G), is the minimum k such that G is the intersection graph of k-dimensional boxes. It is clear that box(G)<= cub(G). From the above result, it follows that for any graph G, cub(G) <= box(G)log(2) alpha]. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 65: 323-333, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A local algorithm with local horizon r is a distributed algorithm that runs in r synchronous communication rounds; here r is a constant that does not depend on the size of the network. As a consequence, the output of a node in a local algorithm only depends on the input within r hops from the node. We give tight bounds on the local horizon for a class of local algorithms for combinatorial problems on unit-disk graphs (UDGs). Most of our bounds are due to a refined analysis of existing approaches, while others are obtained by suggesting new algorithms. The algorithms we consider are based on network decompositions guided by a rectangular tiling of the plane. The algorithms are applied to matching, independent set, graph colouring, vertex cover, and dominating set. We also study local algorithms on quasi-UDGs, which are a popular generalisation of UDGs, aimed at more realistic modelling of communication between the network nodes. Analysing the local algorithms on quasi-UDGs allows one to assume that the nodes know their coordinates only approximately, up to an additive error. Despite the localisation error, the quality of the solution to problems on quasi-UDGs remains the same as for the case of UDGs with perfect location awareness. We analyse the increase in the local horizon that comes along with moving from UDGs to quasi-UDGs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Several types of networks, such as transcriptional, metabolic or protein-protein interaction networks of various organisms have been constructed, that have provided a variety of insights into metabolism and regulation. Here, we seek to exploit the reaction-based networks of three organisms for comparative genomics. We use concepts from spectral graph theory to systematically determine how differences in basic metabolism of organisms are reflected at the systems level and in the overall topological structures of their metabolic networks. Methodology/Principal Findings. Metabolome-based reaction networks of Mycobacterium tuberculosis, Mycobacterium leprae and Escherichia coli have been constructed based on the KEGG LIGAND database, followed by graph spectral analysis of the network to identify hubs as well as the sub-clustering of reactions. The shortest and alternate paths in the reaction networks have also been examined. Sub-cluster profiling demonstrates that reactions of the mycolic acid pathway in mycobacteria form a tightly connected sub-cluster. Identification of hubs reveals reactions involving glutamate to be central to mycobacterial metabolism, and pyruvate to be at the centre of the E. coli metabolome. The analysis of shortest paths between reactions has revealed several paths that are shorter than well established pathways. Conclusions. We conclude that severe downsizing of the leprae genome has not significantly altered the global structure of its reaction network but has reduced the total number of alternate paths between its reactions while keeping the shortest paths between them intact. The hubs in the mycobacterial networks that are absent in the human metabolome can be explored as potential drug targets. This work demonstrates the usefulness of constructing metabolome based networks of organisms and the feasibility of their analyses through graph spectral methods. The insights obtained from such studies provide a broad overview of the similarities and differences between organisms, taking comparative genomics studies to a higher dimension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Any pair of non-adjacent vertices forms a non-edge in a graph. Contraction of a non-edge merges two non-adjacent vertices into a single vertex such that the edges incident on the non-adjacent vertices are now incident on the merged vertex. In this paper, we consider simple connected graphs, hence parallel edges are removed after contraction. The minimum number of nodes whose removal disconnects the graph is the connectivity of the graph. We say a graph is k-connected, if its connectivity is k. A non-edge in a k-connected graph is contractible if its contraction does not result in a graph of lower connectivity. Otherwise the non-edge is non-contractible. We focus our study on non-contractible non-edges in 2-connected graphs. We show that cycles are the only 2-connected graphs in which every non-edge is non-contractible. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose to compress weighted graphs (networks), motivated by the observation that large networks of social, biological, or other relations can be complex to handle and visualize. In the process also known as graph simplication, nodes and (unweighted) edges are grouped to supernodes and superedges, respectively, to obtain a smaller graph. We propose models and algorithms for weighted graphs. The interpretation (i.e. decompression) of a compressed, weighted graph is that a pair of original nodes is connected by an edge if their supernodes are connected by one, and that the weight of an edge is approximated to be the weight of the superedge. The compression problem now consists of choosing supernodes, superedges, and superedge weights so that the approximation error is minimized while the amount of compression is maximized. In this paper, we formulate this task as the 'simple weighted graph compression problem'. We then propose a much wider class of tasks under the name of 'generalized weighted graph compression problem'. The generalized task extends the optimization to preserve longer-range connectivities between nodes, not just individual edge weights. We study the properties of these problems and propose a range of algorithms to solve them, with dierent balances between complexity and quality of the result. We evaluate the problems and algorithms experimentally on real networks. The results indicate that weighted graphs can be compressed efficiently with relatively little compression error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of computing an approximate minimum cycle basis of an undirected non-negative edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. Although in most such applications any cycle basis can be used, a low weight cycle basis often translates to better performance and/or numerical stability. Despite the fact that the problem can be solved exactly in polynomial time, we design approximation algorithms since the performance of the exact algorithms may be too expensive for some practical applications. We present two new algorithms to compute an approximate minimum cycle basis. For any integer k >= 1, we give (2k - 1)-approximation algorithms with expected running time O(kmn(1+2/k) + mn((1+1/k)(omega-1))) and deterministic running time O(n(3+2/k) ), respectively. Here omega is the best exponent of matrix multiplication. It is presently known that omega < 2.376. Both algorithms are o(m(omega)) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Theta(m(omega) ) bound. We also present a 2-approximation algorithm with expected running time O(M-omega root n log n), a linear time 2-approximation algorithm for planar graphs and an O(n(3)) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The boxicity of a graph G is defined as the minimum integer k such that G is an intersection graph of axis-parallel k-dimensional boxes. Chordal bipartite graphs are bipartite graphs that do not contain an induced cycle of length greater than 4. It was conjectured by Otachi, Okamoto and Yamazaki that chordal bipartite graphs have boxicity at most 2. We disprove this conjecture by exhibiting an infinite family of chordal bipartite graphs that have unbounded boxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A claw is an induced subgraph isomorphic to K-1,K-3. The claw-point is the point of degree 3 in a claw. A graph is called p-claw-free when no p-cycle has a claw-point on it. It is proved that for p greater than or equal to 4, p-claw-free graphs containing at least one chordless p-cycle are edge reconstructible. It is also proved that chordal graphs are edge reconstructible. These two results together imply the edge reconstructibility of claw-free graphs. A simple proof of vertex reconstructibility of P-4-reducible graphs is also presented. (C) 1995 John Wiley and Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We establish conditions for the existence, in a chordal graph, of subgraphs homeomorphic to K-n (n greater than or equal to 3), K-m,K-n (m,n greater than or equal to 2), and wheels W-r (r greater than or equal to 3). Using these results, we develop a simple linear time algorithm for testing planarity of chordal graphs. We also show how these results lead to simple polynomial time algorithms for the Fixed Subgraph Homeomorphism problem on chordal graphs for some special classes of pattern graphs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A proper edge-coloring with the property that every cycle contains edges of at least three distinct colors is called an acyclic edge-coloring. The acyclic chromatic index of a graph G, denoted. chi'(alpha)(G), is the minimum k such that G admits an acyclic edge-coloring with k colors. We conjecture that if G is planar and Delta(G) is large enough, then chi'(alpha) (G) = Delta (G). We settle this conjecture for planar graphs with girth at least 5. We also show that chi'(alpha) (G) <= Delta (G) + 12 for all planar G, which improves a previous result by Fiedorowicz, Haluszczak, and Narayan Inform. Process. Lett., 108 (2008), pp. 412-417].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of allocating a single divisible good to a number of agents. The agents have concave valuation functions parameterized by a scalar type. The agents report only the type. The goal is to find allocatively efficient, strategy proof, nearly budget balanced mechanisms within the Groves class. Near budget balance is attained by returning as much of the received payments as rebates to agents. Two performance criteria are of interest: the maximum ratio of budget surplus to efficient surplus, and the expected budget surplus, within the class of linear rebate functions. The goal is to minimize them. Assuming that the valuation functions are known, we show that both problems reduce to convex optimization problems, where the convex constraint sets are characterized by a continuum of half-plane constraints parameterized by the vector of reported types. We then propose a randomized relaxation of these problems by sampling constraints. The relaxed problem is a linear programming problem (LP). We then identify the number of samples needed for ``near-feasibility'' of the relaxed constraint set. Under some conditions on the valuation function, we show that value of the approximate LP is close to the optimal value. Simulation results show significant improvements of our proposed method over the Vickrey-Clarke-Groves (VCG) mechanism without rebates. In the special case of indivisible goods, the mechanisms in this paper fall back to those proposed by Moulin, by Guo and Conitzer, and by Gujar and Narahari, without any need for randomization. Extension of the proposed mechanisms to situations when the valuation functions are not known to the central planner are also discussed. Note to Practitioners-Our results will be useful in all resource allocation problems that involve gathering of information privately held by strategic users, where the utilities are any concave function of the allocations, and where the resource planner is not interested in maximizing revenue, but in efficient sharing of the resource. Such situations arise quite often in fair sharing of internet resources, fair sharing of funds across departments within the same parent organization, auctioning of public goods, etc. We study methods to achieve near budget balance by first collecting payments according to the celebrated VCG mechanism, and then returning as much of the collected money as rebates. Our focus on linear rebate functions allows for easy implementation. The resulting convex optimization problem is solved via relaxation to a randomized linear programming problem, for which several efficient solvers exist. This relaxation is enabled by constraint sampling. Keeping practitioners in mind, we identify the number of samples that assures a desired level of ``near-feasibility'' with the desired confidence level. Our methodology will occasionally require subsidy from outside the system. We however demonstrate via simulation that, if the mechanism is repeated several times over independent instances, then past surplus can support the subsidy requirements. We also extend our results to situations where the strategic users' utility functions are not known to the allocating entity, a common situation in the context of internet users and other problems.