957 resultados para BRANCHED POLYETHYLENE
Resumo:
In this paper, we present the analysis of electroosmotic flow in a branched -turn nanofluidic device, which we developed for detection and sorting of single molecules. The device, where the channel depth is only 150 nm, is designed to optically detect fluorescence from a volume as small as 270 attolitres (al) with a common wide-field fluorescent setup. We use distilled water as the liquid, in which we dilute 110 nm fluorescent beads employed as tracer-particles. Quantitative imaging is used to characterize the pathlines and velocity distribution of the electroosmotic flow in the device. Due to the device's complex geometry, the electroosmotic flow cannot be solved analytically. Therefore we use numerical flow simulation to model our device. Our results show that the deviation between measured and simulated data can be explained by the measured Brownian motion of the tracer-particles, which was not incorporated in the simulation.
Resumo:
The quasi-static and dynamic behaviour of Linear Low Density Polyethylene (LLDPE) and two LLDPE nanocomposites were studied. Nanocomposites consisting of LLDPE filled with 1% carbon black and 0.5% nanoclay fillers, by weight, were considered. Under quasi-static tensile loading, an improvement in the energy absorbing capability was achieved by adding 1% carbon black fillers. However, during quasi-static puncture and dynamic impact loading, the advantage provided by the fillers was lost. Thermal softening due to adiabatic heating under high strain rate deformation and difference s in the state of stress are considered as reasons for this reduction. © 2011 Published by Elsevier Ltd.
Resumo:
The merits and demerits of cotton, polyethylene and combination of the two materials ascertained on the basis of cost, wear and tear, maintenance, total catch and qualitative analysis of the catch are discussed by making comparative fishing experiments with the three trawl gears made of these materials. The study can be concluded with a suggestion for switching over to polyethylene twisted monofilaments for better, in case of bottom trawls without in any way adversely affecting the catch of shrimps and at the same time for enhanced fish catch. Even though the combination net is found to be equal in efficiency as the polyethylene net this idea cannot be conveniently adopted from the point of view of economy.
Resumo:
Results of comparative fishing operations conducted with three nets of identical design made of nylon, twisted polyethylene monofilament and high density polyethylene (HDPE) tape twines are presented in this communication. Since the tape net recorded the highest prawn and fish catch, monofilament and nylon following in order, it can be recommended to the fishing industry as one of the cheapest and effective fishing materials evolved for trawl fabrication.
Resumo:
Photodegradation of three types of polyethylene twines namely, polyethylene fibrillated tape twine, polyethylene flat tape twine and polyethylene monofilament twines were studied by exposing them to sunlight and artificial UV radiation. The percentage residual strength varied in the samples, the monofilament with the highest residual strength followed by fibrillated tape twine and flat tape twine. A plot of the difference between the breaking strengths of the fibrillated tape twine and the mono filament twines against any given period of exposure exhibited a linear relationship
Resumo:
The effect of strain rate upon the uniaxial response of Ultra High Molecular-weight Polyethylene (UHMWPE) fibres, yarns and laminates of lay-up [0/90]48 has been measured in both the 0/90 and ±45 configurations. The tensile strength of the matrix-dominated ±45 laminate is two orders of magnitude less than that of the fibre-dominated 0/90 laminate, and is more sensitive to strain rate. A piezoelectric force sensor device was developed to obtain the high strain rate data, and this achieved a rise time of less than 1 μs. It is found that the failure strength (and failure strain) of the yarn is almost insensitive to strain rate within the range (10 -1-103 s-1). At low strain rates (below 10 -1 s-1), creep of the yarn dominates and the failure strain increases with diminishing strain rate. The tensile strength of the dry yarn exceeds that of the laminate by about 20%. Tests on single fibres exceed the strength of the yarn by 20%. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Hot-pressed laminates with a [0/90]48 lay-up, consisting of 83% by volume of ultra high molecular-weight polyethylene (UHMWPE) fibres, and 17% by volume of polyurethane (PU) matrix, were cut into cantilever beams and subjected to transverse end-loading. The collapse mechanisms were observed both visually and by X-ray scans. Short beams deform elastically and collapse plastically in longitudinal shear, with a shear strength comparable to that observed in double notch, interlaminar shear tests. In contrast, long cantilever beams deform in bending and collapse via a plastic hinge at the built-in end of the beam. The plastic hinge is formed by two wedge-shaped microbuckle zones that grow in size and in intensity with increasing hinge rotation. This new mode of microbuckling under macroscopic bending involves both elastic bending and shearing of the plies, and plastic shear of the interface between each ply. The double-wedge pattern contrasts with the more usual parallel-sided plastic microbuckle that occurs in uniaxial compression. Finite element simulations and analytical models give additional insight into the dominant material and geometric parameters that dictate the collapse response of the UHMWPE composite beam in bending. Detailed comparisons between the observed and predicted collapse responses are used in order to construct a constitutive model for laminated UHMWPE composites. © 2013 Elsevier Ltd.
Resumo:
本论文以茂金属支化及线性聚乙烯为研究对象,系统的研究了共聚物体系结晶序列长度的多分散性以及动力学效应控制的聚合物结晶有序化过程:以茂金属支化聚乙烯为研究对象,提出了结晶序列长度多分散性的概念,并建立了一整套以热分级技术为基础的定量表征结晶序列长度多分散性的方法。从这一概念出发成功的解释了支化聚乙烯等温结晶后的双重熔融峰现象,不同长度的结晶序列在等温结晶过程中形成折叠链和捆束状晶体,它们具有不同的热力学稳定性,升温过程中形成熔融双峰。不仅如此,结晶序列长度多分散性的概念被成功的应用到聚丙烯体系,为监测和表征双向拉伸聚丙烯(BOPP)微观结构提供了新的研究方法和指标。对两个极端序列长度体系结晶行为的研究表明,聚合物结晶是能量效应、墒效应和动力学效应共同作用的结果。对短结晶序列在受限环境下的结晶熔融行为的研究证明除结晶完善过程外还存在非晶区嫡减的过程;线性聚乙烯在超薄膜条件下,结晶初始成核受到抑制,结晶从较厚的部分开始,超薄膜中的分子通过扩散过程在已经结晶的表面成核结晶,分子扩散过程成为结晶速率控制步骤,得到典型的支化晶体;分子在结晶前沿的吸附与解吸附过程是能量效应的体现,决定支化结晶的特征宽度,结晶温度越高,解吸附概率越大,结晶越宽,反之亦然;分子链在晶体中沿b轴倾斜约350,使得在生长面与基板成锐角的一侧分子的构象受到限制,导致结晶速率降低,结晶生长速度的不对称导致结晶形态的不对称。