879 resultados para BLACK-HOLES
Resumo:
This thesis consists of two parts. In Part I, we develop a multipole moment formalism in general relativity and use it to analyze the motion and precession of compact bodies. More specifically, the generic, vacuum, dynamical gravitational field of the exterior universe in the vicinity of a freely moving body is expanded in positive powers of the distance r away from the body's spatial origin (i.e., in the distance r from its timelike-geodesic world line). The expansion coefficients, called "external multipole moments,'' are defined covariantly in terms of the Riemann curvature tensor and its spatial derivatives evaluated on the body's central world line. In a carefully chosen class of de Donder coordinates, the expansion of the external field involves only integral powers of r ; no logarithmic terms occur. The expansion is used to derive higher-order corrections to previously known laws of motion and precession for black holes and other bodies. The resulting laws of motion and precession are expressed in terms of couplings of the time derivatives of the body's quadrupole and octopole moments to the external moments, i.e., to the external curvature and its gradient.
In part II, we study the interaction of magnetohydrodynamic (MHD) waves in a black-hole magnetosphere with the "dragging of inertial frames" effect of the hole's rotation - i.e., with the hole's "gravitomagnetic field." More specifically: we first rewrite the laws of perfect general relativistic magnetohydrodynamics (GRMHD) in 3+1 language in a general spacetime, in terms of quantities (magnetic field, flow velocity, ...) that would be measured by the ''fiducial observers” whose world lines are orthogonal to (arbitrarily chosen) hypersurfaces of constant time. We then specialize to a stationary spacetime and MHD flow with one arbitrary spatial symmetry (e.g., the stationary magnetosphere of a Kerr black hole); and for this spacetime we reduce the GRMHD equations to a set of algebraic equations. The general features of the resulting stationary, symmetric GRMHD magnetospheric solutions are discussed, including the Blandford-Znajek effect in which the gravitomagnetic field interacts with the magnetosphere to produce an outflowing jet. Then in a specific model spacetime with two spatial symmetries, which captures the key features of the Kerr geometry, we derive the GRMHD equations which govern weak, linealized perturbations of a stationary magnetosphere with outflowing jet. These perturbation equations are then Fourier analyzed in time t and in the symmetry coordinate x, and subsequently solved numerically. The numerical solutions describe the interaction of MHD waves with the gravitomagnetic field. It is found that, among other features, when an oscillatory external force is applied to the region of the magnetosphere where plasma (e+e-) is being created, the magnetosphere responds especially strongly at a particular, resonant, driving frequency. The resonant frequency is that for which the perturbations appear to be stationary (time independent) in the common rest frame of the freshly created plasma and the rotating magnetic field lines. The magnetosphere of a rotating black hole, when buffeted by nonaxisymmetric magnetic fields anchored in a surrounding accretion disk, might exhibit an analogous resonance. If so then the hole's outflowing jet might be modulated at resonant frequencies ω=(m/2) ΩH where m is an integer and ΩH is the hole's angular velocity.
Resumo:
We study the Hawking radiation of a (4+n)-dimensional Schwarzschild black hole imbedded in space-time with a positive cosmological constant. The greybody and energy emission rates of scalars, fermions, bosons, and gravitons are calculated in the full range of energy. Valuable information on the dimensions and curvature of space-time is revealed. Furthermore, we investigate the entropy radiated and lost by black holes. We find their ratio near 1 in favor of the Bekenstein's conjecture.
Resumo:
We report on the optical spectroscopy of the eclipsing halo low-mass X-ray binary 2S 0921-630, which reveals the absorption-line radial velocity curve of the K0 III secondary star with a semiamplitude K-2=92.89+/-3.84 km s(-1), a systemic velocity gamma=34.9+/-3.3 km s(-1), and an orbital period P-orb of 9.0035+/-0.0029 days (1 sigma). Given the quality of the data, we find no evidence for the effects of X-ray irradiation. Using the previously determined rotational broadening of the mass donor and applying conservative limits on the orbital inclination, we constrain the compact object mass to be 2.0-4.3 M-circle dot (1 sigma), ruling out a canonical neutron star at the 99% level. Since the nature of the compact object is unclear, this mass range implies that the compact object is either a low-mass black hole with a mass slightly higher than the maximum possible neutron star mass (2.9 M-circle dot) or a massive neutron star. If the compact object is a black hole, it confirms the prediction of the existence of low-mass black holes, while if the object is a massive neutron star, its high mass severely constrains the equation of state of nuclear matter.
Resumo:
The question of stability of black hole was first studied by Regge and Wheeler who investigated linear perturbations of the exterior Schwarzschild spacetime. Further work on this problem led to the study of quasi-normal modes which is believed as a characteristic sound of black holes. Quasi-normal modes (QNMs) describe the damped oscillations under perturbations in the surrounding geometry of a black hole with frequencies and damping times of oscillations entirely fixed by the black hole parameters.In the present work we study the influence of cosmic string on the QNMs of various black hole background spacetimes which are perturbed by a massless Dirac field.
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
This thesis Entitled Studies on Quasinormal modes and Late-time tails black hole spacetimes. In this thesis, the signature of these new theories are probed on the evolution of field perturbations on the black hole spacetimes in the theory. Chapter 1 gives a general introduction to black holes and its perturbation formalism. Various concepts in the area covered by the thesis are also elucidated in this chapter. Chapter 2 describes the evolution of massive, charged scalar field perturbations around a Reissner-Nordstrom black hole surrounded by a static and spherically symmetric quintessence. Chapter 3 comprises the evolution of massless scalar, electromagnetic and gravitational fields around spherically symmetric black hole whose asymptotes are defined by the quintessence, with special interest on the late-time behavior. Chapter 4 examines the evolution of Dirac field around a Schwarzschild black hole surrounded by quintessence. Detailed numerical simulations are done to analyze the nature of field on different surfaces of constant radius . Chapter 5is dedicated to the study of the evolution of massless fields around the black hole geometry in the HL gravity.
Resumo:
We investigate the influence of vacuum polarization of quantum massive fields on the scalar sector of quasinormal modes in spherically symmetric black holes. We consider the evolution of a massless scalar field on the space-time corresponding to a charged semiclassical black hole, consisting of the quantum-corrected geometry of a Reissner-Nordstrom black hole dressed by a quantum massive scalar field in the large mass limit. Using a sixth order WKB approach we find a shift in the quasinormal mode frequencies due to vacuum polarization.
Resumo:
This thesis explores the possibility of directly detecting blackbody emission from Primordial Black Holes (PBHs). A PBH might form when a cosmological density uctuation with wavenumber k, that was once stretched to scales much larger than the Hubble radius during ination, reenters inside the Hubble radius at some later epoch. By modeling these uctuations with a running{tilt power{law spectrum (n(k) = n0 + a1(k)n1 + a2(k)n2 + a3(k)n3; n0 = 0:951; n1 = ????0:055; n2 and n3 unknown) each pair (n2,n3) gives a di erent n(k) curve with a maximum value (n+) located at some instant (t+). The (n+,t+) parameter space [(1:20,10????23 s) to (2:00,109 s)] has t+ = 10????23 s{109 s and n+ = 1:20{2:00 in order to encompass the formation of PBHs in the mass range 1015 g{1010M (from the ones exploding at present to the most massive known). It was evenly sampled: n+ every 0.02; t+ every order of magnitude. We thus have 41 33 = 1353 di erent cases. However, 820 of these ( 61%) are excluded (because they would provide a PBH population large enough to close the Universe) and we are left with 533 cases for further study. Although only sub{stellar PBHs ( 1M ) are hot enough to be detected at large distances we studied PBHs with 1015 g{1010M and determined how many might have formed and still exist in the Universe. Thus, for each of the 533 (n+,t+) pairs we determined the fraction of the Universe going into PBHs at each epoch ( ), the PBH density parameter (PBH), the PBH number density (nPBH), the total number of PBHs in the Universe (N), and the distance to the nearest one (d). As a rst result, 14% of these (72 cases) give, at least, one PBH within the observable Universe, one{third being sub{stellar and the remaining evenly spliting into stellar, intermediate mass and supermassive. Secondly, we found that the nearest stellar mass PBH might be at 32 pc, while the nearest intermediate mass and supermassive PBHs might be 100 and 1000 times farther, respectively. Finally, for 6% of the cases (four in 72) we might have substellar mass PBHs within 1 pc. One of these cases implies a population of 105 PBHs, with a mass of 1018 g(similar to Halley's comet), within the Oort cloud, which means that the nearest PBH might be as close as 103 AU. Such a PBH could be directly detected with a probability of 10????21 (cf. 10????32 for low{energy neutrinos). We speculate in this possibility.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We quantize the low-energy sector of a massless scalar field in Reissner-Nordström spacetime. This allows the analysis of processes involving soft scalar particles occurring outside charged black holes. In particular, we compute the response of a static scalar source interacting with Hawking radiation using the Unruh (and the Hartle-Hawking) vacuum. This response is compared with the one obtained when the source is uniformly accelerated in the usual vacuum of Minkowski spacetime with the same proper acceleration. We show that both responses are in general different in opposition to the result obtained when the Reissner-Nordström black hole is replaced by a Schwarzschild one. The conceptual relevance of this result is commented on. ©2000 The American Physical Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a 'blind injection challenge' similar to that conducted in recent Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo science runs, we added seven hybrid waveforms to two months of data recoloured to predictions of Advanced LIGO (aLIGO) and Advanced Virgo (AdV) sensitivity curves during their first observing runs. The resulting data was analysed by GW detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter-estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We find that the strong degeneracy between the mass ratio and the BHs' angular momenta will make it difficult to precisely estimate these parameters with aLIGO and AdV. We also perform a large-scale Monte Carlo study to assess the ability to recover each of the 60 hybrid waveforms with early aLIGO and AdV sensitivity curves. Our results predict that early aLIGO and AdV will have a volume-weighted average sensitive distance of 300 Mpc (1 Gpc) for 10M circle dot + 10M circle dot (50M circle dot + 50M circle dot) BBH coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. This reduction is estimated to be up to similar to 15% for 50M circle dot + 50M circle dot BBH coalescences with almost maximal angular momenta aligned with the orbit when using early aLIGO and AdV sensitivity curves.
Resumo:
This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009-October 2010) and was sensitive to IMBHBs with a range up to similar to 200 Mpc, averaged over the possible sky positions and inclinations of the binaries with respect to the line of sight. No significant candidate was found. Upper limits on the coalescence-rate density of nonspinning IMBHBs with total masses between 100 and 450 M-circle dot and mass ratios between 0.25 and 1 were placed by combining this analysis with an analogous search performed on data from the first LIGO-Virgo joint science run (November 2005-October 2007). The most stringent limit was set for systems consisting of two 88 M-circle dot black holes and is equal to 0.12 Mpc(-3) Myr(-1) at the 90% confidence level. This paper also presents the first estimate, for the case of an unmodeled analysis, of the impact on the search range of IMBHB spin configurations: the visible volume for IMBHBs with nonspinning components is roughly doubled for a population of IMBHBs with spins aligned with the binary's orbital angular momentum and uniformly distributed in the dimensionless spin parameter up to 0.8, whereas an analogous population with antialigned spins decreases the visible volume by similar to 20%.
Resumo:
The aim of this work is to explore, within the framework of the presumably asymptotically safe Quantum Einstein Gravity, quantum corrections to black hole spacetimes, in particular in the case of rotating black holes. We have analysed this problem by exploiting the scale dependent Newton s constant implied by the renormalization group equation for the effective average action, and introducing an appropriate "cutoff identification" which relates the renormalization scale to the geometry of the spacetime manifold. We used these two ingredients in order to "renormalization group improve" the classical Kerr metric that describes the spacetime generated by a rotating black hole. We have focused our investigation on four basic subjects of black hole physics. The main results related to these topics can be summarized as follows. Concerning the critical surfaces, i.e. horizons and static limit surfaces, the improvement leads to a smooth deformation of the classical critical surfaces. Their number remains unchanged. In relation to the Penrose process for energy extraction from black holes, we have found that there exists a non-trivial correlation between regions of negative energy states in the phase space of rotating test particles and configurations of critical surfaces of the black hole. As for the vacuum energy-momentum tensor and the energy conditions we have shown that no model with "normal" matter, in the sense of matter fulfilling the usual energy conditions, can simulate the quantum fluctuations described by the improved Kerr spacetime that we have derived. Finally, in the context of black hole thermodynamics, we have performed calculations of the mass and angular momentum of the improved Kerr black hole, applying the standard Komar integrals. The results reflect the antiscreening character of the quantum fluctuations of the gravitational field. Furthermore we calculated approximations to the entropy and the temperature of the improved Kerr black hole to leading order in the angular momentum. More generally we have proven that the temperature can no longer be proportional to the surface gravity if an entropy-like state function is to exist.
Resumo:
General Relativity is one of the greatest scientific achievementes of the 20th century along with quantum theory. These two theories are extremely beautiful and they are well verified by experiments, but they are apparently incompatible. Hints towards understanding these problems can be derived studying Black Holes, some the most puzzling solutions of General Relativity. The main topic of this Master Thesis is the study of Black Holes, in particular the Physics of Hawking Radiation. After a short review of General Relativity, I study in detail the Schwarzschild solution with particular emphasis on the coordinates systems used and the mathematical proof of the classical laws of Black Hole "Thermodynamics". Then I introduce the theory of Quantum Fields in Curved Spacetime, from Bogolubov transformations to the Schwinger-De Witt expansion, useful for the renormalization of the stress energy tensor. After that I introduce a 2D model of gravitational collapse to study the Hawking radiation phenomenon. Particular emphasis is given to the analysis of the quantum states, from correlations to the physical implication of this quantum effect (e.g. Information Paradox, Black Hole Thermodynamics). Then I introduce the renormalized stress energy tensor. Using the Schwinger-De Witt expansion I renormalize this object and I compute it analytically in the various quantum states of interest. Moreover, I study the correlations between these objects. They are interesting because they are linked to the Hawking radiation experimental search in acoustic Black Hole models. In particular I find that there is a characteristic peak in correlations between points inside and outside the Black Hole region, which correpsonds to entangled excitations inside and outside the Black Hole. These peaks hopefully will be measurable soon in supersonic BEC.