206 resultados para BISPHENOL
Resumo:
Two PPV-based copolymers consisting siloxane linkage have been synthesized by melt condensation of bisphenol and dianilinodimethylsilane. The rigid PPV segments act as chromosphere and allow fine turning of band gap for blue-light emission, while the flexible siloxane units lead to the effective interruption of conjugation and the enhancement of solubility. The UV-vis absorption, photoluminescent and eletroluminescent properties have been studied.
Resumo:
The effects of the chain structure and the intramolecular interaction energy of an A/B copolymer on the miscibility of the binary blends of the copolymer and homopolymer C have been studied by means of a Monte Carlo simulation. In the system, the interactions between segments A, B and C are more repulsive than those between themselves. In order to study the effect of the chain structure of the A/B copolymer on the miscibility, the alternating, random and block copolymers were introduced in the simulations, respectively. The simulation results show that the miscibility of the binary blends strongly depends on the intramolecular interaction energy ((ε) over bar (AB)) between segments A and B within the A/B copolymers. The higher the repulsive interaction energy, the more miscible the A/B copolymer and homopolymer C are. For the diblock copolymer/homopolymer blends, they tend to form micro phase domains. However, the phase domains become so small that the blend can be considered as a homogeneous phase for the alternating copolymer/ homopolymer blends. Furthermore, the investigation of the average end-to-end distance ((h) over bar) in different systems indicates that the copolymer chains tend to coil with the decrease Of (ε) over bar (AB) whereas the (h) over bar of the homopolymer chains depends on the chain structure of the copolymers.
Resumo:
The thin films of poly(methyl methacrylate) (PMMA), poly(styrene-co-acrylonitrile) (SAN) and their blends were prepared by means of spin-coating their corresponding solutions onto silicon wafers, followed by being annealed at different temperatures. The surface phase separations of PMMA/SAN blends were characterized by virtue of atomic force microscopy (AFM). By comparing the tapping mode AFM (TM-AFM) phase images of the pure components and their blends, surface phase separation mechanisms of the blends could be identified as the nucleation and growth mechanism or the spinodal decomposition mechanism. Therefore, the phase diagram of the PMMA/SAN system could be obtained by means of TM-AFM. Contact mode AFM was also used to study the surface morphologies of all the samples and the phase separations of the blends occurred by the spinodal decomposition mechanism could be ascertained. Moreover, X-ray photoelectron spectroscopy was used to characterize the chemical compositions on the surfaces of the samples and the miscibility principle of the PMMA/SAN system was discussed.
Resumo:
Phenolphthalein based polyarylate macrocyclic oligomers were selectively synthesized by an interfacial polycondensation reaction of o-phthaloyl dichloride with phenolphthalein. The high selectivity benefits from the role of phenolphthalein as a color indicator, an efficient phase transfer catalyst, acid a preferred conformation of the starting materials as indicated by analyzing a single-crystal X-ray structure of an analogous macrocycle. The melt ROP of phenolphthalein polyarylate cyclic dimer was studied using nucleophilic initiators, The molecular weight of the resulting polymers builds up very rapidly at the very early stage of polymerization but decreases with time. During the ROP of cyclic dimer, analogous macrocycles with higher degree of polymerization (n greater than or equal to 3) and linear oligomers were produced by backbiting reaction especially at later stage of polymerization. Conversion of cyclic dimer is very fast at the earlier stage of polymerization and then increases slowly with time as analyzed by gel permeation chromatography. However, the total amount of cyclic oligomers in the ROP system increases with time at the later stage of polymerization because of the formation of larger macrocycles. The resulting polymers are amorphous. Glass transition temperatures (T(g)s) of these polymers are influenced by the polymerization time, type of initiator, and initiator concentration.
Resumo:
Gas transport of hydrogen, oxygen, nitrogen, carbon dioxide, and methane in four cardo poly(aryl ether ketone)s containing different alkyl substituents on the phenyl ring has been examined from 30 to 100 degrees C. The permeability, diffusivity, solubility, and their temperature dependency were studied by correlations with gas shape, size, and critical temperature as well as polymeric structural factors including glass transition, secondary transition, cohesive energy density, and free volume. The bulky, stiff cardo and alkyl groups in tetramethyl-substituted TMPEK-C resulted in increased H-2 permeability (by 55%) and H-2/N-2 permselectivity (by 106%) relative to bisphenol A polysulfone (PSF). Moreover, the weak dependence of gas transport on temperature in TMPEK-C made it maintain high permselectivities (alpha(H2/N2) in 68.3 and alpha(O2/N2) in 5.71) up to 100 degrees C, exhibiting potential for high-temperature gas separation applications.
Resumo:
Novel water insoluble sodium sulfonate-functionalized poly(ether ether ketone)s containing cyclohexylidene in the main chain with degree of sulfonation up to 2.0 were synthesized from nucleophilic polycondensation of 5, 5'-carbonylbis (2-fluorobenzenesulfonate), 4, 4'-difluorobenzophenone and 4, 4'-cyclohexylidenebisphenol. The polymers showed excellent thermal stability and good water resistance as well. The DSC diagrams and WAXD patterns indicated an amorphous morphological structure of these polymers. A comprison of some properties between these copolymers and polymers derived from bisphenol A was given.
Resumo:
Sodium sulfonate-functionalized polyether ether ketone)s derived from Bisphenol A with a degree of sulfonation up to 2.0 were synthesized by aromatic nucleophilic polycondensation of various amounts of 5,5-carbonylbis(2-fluorobenzenesulfonate) (1), 4,4'-diflurobenzophenone (2) and Bisphenol A (2). Copolymers showed excellent thermal stability and good mechanical properties. The selectivity of water vapor over nitrogen of membranes prepared from copolymers 3a and 3h was determined to be 3.43 x 10(6) and 1.05 x 10(7), respectively.
Resumo:
A series of high sulfonated poly(ether ether ketone)s were prepared by copolymerization of sodium 5,5 ' -carbonylbis (2-fluorobenzenesulfonate)(2),4,4 ' -difluorobenzophenone (1) and bisphenol A(3) in the presence of potassium carbonate in dimethylsulfoxide. The copolymers were characterized by IR and DSC, The influence of degree of sulfonation on the properties of copolymers, such as component, thermal stability, solubility and filming ability, was studied.
Resumo:
A new photochromic bisphenoxynaphthacenequinone compound, 6,6'-[1-methylethylidenebis (4,1-phenyleneoxy)]bis (5,12-naphthacenequinone) (1), was synthesized by a two-step method, i.e., synthesis of 6-[4-(2-(4-hydroxyphenyl)isopropyl) phenoxy]-5, 12-naphthacenequinone (2) from 6-chloro-5, 12-naphthacenequinone (3) and bisphenol-A, and a further reaction of compound 2 in DMF/acetone mixed solvent in the presence of anhydrous potassium carbonate and potassium iodide. The crude product is obtained in a precipitate form and can easily be purified by recrystallization. The solvent composition has marked influence on the yield of the precipitated crude product in the second step.
Resumo:
Novel cyclic aryl ether sulfone oligomers have been synthesized in high yield based on bisphenol A and 4-fluoro-3-nitrophenyl sulfone firstly through interfacial polycondensation reaction under a pseudo-high-dilution condition. Detailed structural characterization of the oligomers by MS, GPC, NMR and IR analyses confirmed the cyclic nature.
Resumo:
Some novel macrocyclic (arylene ether sulfone) containing cardo groups and (arylene ether ketone sulfone) oligomers have been synthesized in high yields by a nucleophilic aromatic substitution reaction of 4,4'-difluorophenylsulfone with bisphenols in the presence of anhydrous potassium carbonate under a pseudo-high-dilution condition. Detailed structural characterization of these oligomers by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS), fast atom bombardment mass spectrometry (f.a.b.-m.s.), nuclear magnetic resonance spectrometry (n.m.r.) and single-crystal X-ray structure analysis confirms their cyclic nature, and the composition of the oligomeric mixtures is provided by g.p.c. analysis. Ring polymerization of cyclic oligomers 3a to a high molecular weight polymer with M-w of 59.1 k was achieved by heating at 290 degrees C for 40 min in the presence of a nucleophilic initiator. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A new monomer, sodium 5,5'-carbonylbis(2-fluorobenzenesulfonate) (1), was synthesized by sulfonation of 4,4'-difluorobenzophenone (2) with fuming sulfuric acid. Poly(ether ether ketone)s containing sodium sulfonate groups were synthesized directly via aromatic nucleophilic substitution from the sodium sulfonate-functionalized monomer 1 and Bisphenol A (3) in the presence of potassium carbonate in dimethyl sulfoxide. The polycondensation proceeds without any side reactions. The differential scanning calorimetry measurement indicated that the polymers are amorphous and the glass transition temperatures increase with the content of sodium sulfonate groups in the polymer chain. The degree of substitution with sodium sulfonate groups has strong influence on their thermal stability and solubility.
Resumo:
Macrocyclic arylene ether ketone dimer was isolated from a mixture of cyclic oligomers obtained by the nucleophilic substitution reaction of bisphenol A and 4,4'-difluorobenzophenone and easily polymerized to high molecular weight linear poly(ether ketone). The cyclic compound was characterized by FTIR, H-1- and C-13-NMR, and single-crystal x-ray diffraction. Analysis of the spectral and crystal structure reveals extreme distortions of he phenyl rings attached to the isopropylidene center and of the turning points of the molecular polygons. The release of the ring strain on ring-opening combined with entropical difference between the linear polymer chain and the more rigid macrocycle at temperatures of polymerization may be the proposed motivating factors in the polymerization of this precursor to high molecular weight poly(ether ketone). (C) 1997 John Wiley & Sons, Inc.
Resumo:
The gas transport of hydrogen, oxygen, nitrogen, carbon dioxide, and methane gases in a series of poly(aryl ether ketone)s was examined. These polymer membranes have a wide range of permeability coefficients and permselectivity coefficients, showing excellent gas-transport properties. The enhanced interchain interaction in the polymers due to intermolecular hydrogen bonds and ionic bonds results in a considerable increase in permselectivity but a decrease in permeability. On the contrary, the polymers with bulky arkyl substituents show significantly increased permeability. The causes of this trend are interpreted in terms of the free volume, interchain distance, and glass transition temperature together with the respective contribution of gas solubility and diffusivity to the overall permeability. Of interest is the observation that the ionomer IMPEK-K+, which simultaneously contains bulky isopropyl substituents and pendant carboxylate groups, exhibits over twice higher CO2 permeability and 15% higher CO2/CH4 permselectivity than those of bisphenol-A p'olysulfone (PSF). The possibility of using the new synthesized poly(aryl ether ketone)s in gas separation membrane application is also discussed. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Interpenetrating polymer networks (IPNs) have been synthesized from prepolymers that form miscible blends. All IPNs made from polyacrylate ((polyethylene glycol diacrylate), PEGDA) and epoxy (diglycidyl ether of bisphenol A, DGEBA) can be made in phase separated states by incorporating crosslinks. However, blends of these prepolymers, having a negative Flory-Huggins interaction parameter, are highly miscible. This indicates that formation of IPNs favours phase separation relative to blends. The microphase separation characteristics in the PEGDA/DGEBA IPNs were determined using smalt-angle X-ray scattering (SAXS). The Debye-Bueche and Guinier methods were used to calculate the correlation lengths of the segregated phases existing in the PEGDA/DGEBA IPNs. The results from SAXS showed that the size of the phase segregation zones changed with composition from about 50 to 100 Angstrom.