986 resultados para BEHAVIORAL-RESPONSES
Resumo:
Corticotropin-releasing factor (CRF) is expressed in the paraventricular nucleus of the hypothalamus (PVN), and act centrally to provoke stress-like autonomic and behavioral responses. Urocortins 1-3 are additional ligands to the CRF receptors 1 and 2. Ucn 1 neurons are primarily concentrated in the Edinger-Westphal (EW) nucleus and also have been associated with stress responses. It is also known that UCN 1 respond in different ways depending on the stressor presented. Benzodiazepines can act via the CRF peptidergic system and chronic administration of alprazolam does not interfere with CRF mRNA expression in the PVN, but significantly increase Ucn 1 mRNA expression in the EW. The aim of our study was to investigate the relationship between different stressor stimuli, foot shock (FS) and restraint (R), and the mRNA expression of CRF and Ucn 1 in the PVN and EW using alprazolam (A). We employed fos activation and in situ hybridization. Restraint group presented increased fos-ir and CRF mRNA expression in the PVN compared to FS group. The stress responses of R group were prevented by A. In the EW,fos-ir was higher in the FS group than in the R group, whereas Ucn 1 mRNA expression was higher in the R group than in the FS group. Alprazolam significantly increased fos-ir and Ucn 1 mRNA expression in both groups. Our results show that PVN and EW respond in different ways to the same stressors. Furthermore, EW of stressed animals replies in a complementary way comparing to PVN with the use of Alprazolam. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Olfactory information modulates innate and social behaviors in rodents and other species. Studies have shown that the medial nucleus of the amygdala (MEA) and the ventral premammillary, nucleus (PMV) are recruited by conspecific odor stimulation. However, the chemical identity of these neurons is not determined. We exposed sexually inexperienced male rats to female or male odors and assessed Fos immunoreactivity (Fos-ir) in neurons expressing NADPH diaphorase activity (NADPHd, a nitric oxide synthase), neuropeptide Urocortin 3, or glutamic acid decarboxylase rnRNA (GAD-67, a GABA-synthesizing enzyme) in the MEA and PMV. Male and female odors elicited Fos-ir in the MEA and PMV neurons, but the number of Fos-immunoreactive neurons was higher following female odor exposure, in both nuclei. We found no difference in odor induced Fos-ir ill the MEA and PMV comparing fed and fasted animals. Ill the MEA, NADPHd neurons colocalized Fos-ir only in response to female odors. In addition, Urocortin 3 neurons comprise a distinct population and they do not express Fos-ir after conspecific odor stimulation. We found that 80% of neurons activated by male odors coexpressed GAD-67 mRNA. Following female odor, 50% of Fos neurons coexpressed GAD-67 rnRNA. The PMV expresses very little GAD-67, and virtually no colocalization with Fos was observed. We found intense NADPHd activity in PMV neurons, some of which coexpressed Fos-ir after exposure to both odors. The majority of the PMV neurons expressing NADPHd colocalized cocaine-and amphetamine-regulated transcript (CART). Our findings suggest that female and male odors engage distinct neuronal populations in the MEA, thereby inducing contextualized behavioral responses according to olfactory cues. In the PMV, NADPHd/CART neurons respond to male and female odors, suggesting a role in neuroendocrine regulation in response to olfactory cues. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The hypothalamus plays especially important roles in various endocrine, autonomic, and behavioral responses that guarantee the survival of both the individual and the species. In the rat, a distinct hypothalamic defensive circuit has been defined as critical for integrating predatory threats, raising an important question as to whether this concept could be applied to other prey species. To start addressing this matter, in the present study, we investigated, in another prey species (the mouse), the pattern of hypothalamic Fos immunoreactivity in response to exposure to a predator (a rat, using the Rat Exposure Test). During rat exposure, mice remained concealed in the home chamber for a longer period of time and increased freezing and risk assessment activity. We were able to show that the mouse and the rat present a similar pattern of hypothalamic activation in response to a predator. Of particular note, similar to what has been described for the rat, we observed in the mouse that predator exposure induces a striking activation in the elements of the medial hypothalamic defensive system, namely, the anterior hypothalamic nucleus, the dorsomedial part of the ventromedial hypothalamic nucleus and the dorsal premammillary nucleus. Moreover, as described for the rat, predator-exposed mice also presented increased Fos levels in the autonomic and parvicellular parts of the paraventricular hypothalamic nucleus, lateral preoptic area and subfornical region of the lateral hypothalamic area. In conclusion, the present data give further support to the concept that a specific hypothalamic defensive circuit should be preserved across different prey species. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Effective defense against natural threats in the environment is essential for the survival of individual animals. Thus, instinctive behavioral responses accompanied by fear have evolved to protect individuals from predators and from opponents of the same species (dominant conspecifics). While it has been suggested that all perceived environmental threats trigger the same set of innately determined defensive responses, we tested the alternate hypothesis that different stimuli may evoke differentiable behaviors supported by distinct neural circuitry. The results of behavioral, neuronal immediate early gene activation, lesion, and neuroanatomical experiments indicate that the hypothalamus is necessary for full expression of defensive behavioral responses in a subordinate conspecific, that lesions of the dorsal premammillary nucleus drastically reduce behavioral measures of fear in these animals, and that essentially separate hypothalamic circuitry supports defensive responses to a predator or a dominant conspecific. It is now clear that differentiable neural circuitry underlies defensive responses to fear conditioning associated with painful stimuli, predators, and dominant conspecifics and that the hypothalamus is an essential component of the circuitry for the latter two stimuli.
Resumo:
In this study we provide a comprehensive analysis of the hypothalamic activation pattern during exposure to a live predator or an environment previously associated with a predator. Our results support the view that hypothalamic processing of the actual and the contextual predatory threats share the same circuit, in which the dorsal premammillary nucleus (PMd) plays a pivotal role in amplifying this processing. To further understand the role of the PMd in the circuit organizing antipredatory defensive behaviors, we studied rats with cytotoxic PMd lesions during cat exposure and examined the pattern of behavioral responses as well as how PMd lesions affect the neuronal activation of the systems engaged in predator detection, in contextual memory formation and in defensive behavioral responses. Next, we investigated how pharmacological blockade of the PMd interferes with the conditioned behavioral responses to a context previously associated with a predator, and how this blockade affects the activation pattern of periaqueductal gray (PAG) sites likely to organize the conditioned behavioral responses to the predatory context. Behavioral observations indicate that the PMd interferes with both unconditioned and conditioned antipredatory defensive behavior. Moreover, we have shown that the PMd influences the activation of its major projecting targets, i.e. the ventral part of the anteromedial thalamic nucleus which is likely to influence mnemonic processing, and PAG sites involved in the expression of antipredatory unconditioned and conditioned behavioral responses. Of particular relevance, this work provides evidence to elucidate the basic organization of the neural circuits integrating unconditioned and contextual conditioned responses to predatory threats.
Resumo:
The midbrain periaqueductal gray (PAG) is part of the brain system involved in active defense reactions to threatening stimuli. Glutamate N-methyl-d-aspartate (NMDA) receptor activation within the dorsal column of the PAG (dPAG) leads to autonomic and behavioral responses characterized as the fear reaction. Nitric oxide (NO) has been proposed to be a mediator of the aversive action of glutamate, since the activation of NMDA receptors in the brain increases NO synthesis. We investigated the effects of intra-dPAG infusions of NMDA on defensive behaviors in mice pretreated with a neuronal nitric oxide synthase (nNOS) inhibitor [N omega-propyl-l-arginine (NPLA)], in the same midbrain site, during a confrontation with a predator in the rat exposure test (RET). Male Swiss mice received intra-dPAG injections of NPLA (0.1 or 0.4 nmol/0.1 mu l), and 10 min later, they were infused with NMDA (0.04 nmol/0.1 mu l) into the dPAG. After 10 min, each mouse was placed in the RET. NMDA treatment enhanced avoidance behavior from the predator and markedly increased freezing behavior. These proaversive effects of NMDA were prevented by prior injection of NPLA. Furthermore, defensive behaviors (e.g., avoidance, risk assessment, freezing) were consistently reduced by the highest dose of NPLA alone, suggesting an intrinsic effect of nitric oxide on defensive behavior in mice exposed to the RET. These findings suggest a potential role of glutamate NMDA receptors and NO in the dPAG in the regulation of defensive behaviors in mice during a confrontation with a predator in the RET.
Resumo:
The Behavioral Finance develop as it is perceived anomalies in these markets efficient. This fields of study can be grouped into three major groups: heuristic bias, tying the shape and inefficient markets. The present study focuses on issues concerning the heuristics of representativeness and anchoring. This study aimed to identify the then under-reaction and over-reaction, as well as the existence of symmetry in the active first and second line of the Brazilian stock market. For this, it will be use the Fuzzy Logic and the indicators that classify groups studied from the Discriminant Analysis. The highest present, indicator in the period studied, was the Liabilities / Equity, demonstrating the importance of the moment to discriminate the assets to be considered "winners" and "losers." Note that in the MLCX biases over-reaction is concentrated in the period of financial crisis, and in the remaining periods of statistically significant biases, are obtained by sub-reactions. The latter would be in times of moderate levels of uncertainty. In the Small Caps the behavioral responses in 2005 and 2007 occur in reverse to those observed in the Mid-Large Cap. Now in times of crisis would have a marked conservatism while near the end of trading on the Bovespa speaker, accompanied by an increase of negotiations, there is an overreaction by investors. The other heuristics in SMLL occurred at the end of the period studied, this being a under-reaction and the other a over-reaction and the second occurring in a period of financial-economic more positive than the first. As regards the under / over-reactivity in both types, there is detected a predominance of either, which probably be different in the context in MLCX without crisis. For the period in which such phenomena occur in a statistically significant to note that, in most cases, such phenomena occur during the periods for MLCX while in SMLL not only biases are less present as there is no concentration of these at any time . Given the above, it is believed that while detecting the presence of bias behavior at certain times, these do not tend to appear to a specific type or heuristics and while there were some indications of a seasonal pattern in Mid- Large Caps, the same behavior does not seem to be repeated in Small Caps. The tests would then suggest that momentary failures in the Efficient Market Hypothesis when tested in semistrong form as stated by Behavioral Finance. This result confirms the theory by stating that not only rationality, but also human irrationality, is limited because it would act rationally in many circumstances
Resumo:
Glutamate NMDA receptor activation within the periaqueductal gray (PAG) leads to antinociceptive, autonomic and behavioral responses characterized as the fear reaction. Considering that NMDA receptor triggers activation of neuronal nitric oxide synthase (nNOS), enzyme that produces nitric oxide (NO), this study investigated the effects of intra-PAG infusions of NPLA (N omega-propyl-L-arginine), an nNOS inhibitor, on behavioral and antinociceptive responses induced by local injection of NMDA receptor agonist in mice. The behaviors measured were frequency of jumping and rearing as well as duration (in seconds) of running and freezing. Nociception was assessed during the second phase of the formalin test (injection of 50 mu l of formalin 2.5% into the dorsal surface of the right hind paw). Five to seven days after stereotaxic surgery for intracerebral cannula implantation, mice were injected with formalin into the paw, and 10 min later, they received intra-dPAG injection of NPLA (0, 0.2, or 0.4 nmol/0.1 mu l). Ten minutes later, they were injected with NMDA (N-methyl-D-aspartate: 0 or 0.04 nmol/0.1 mu l) into the same midbrain site and were immediately placed in glass holding cage for recording the defensive behavior and the time spent on licking the injected paw with formalin during a period of 10 min. Microinjections of NMDA significantly decreased nociception response and produced jumping, running, and freezing reactions. Intra-dPAG injections of NPLA (0.4 nmol) completely blocked the NMDA effects without affecting either behavioral or nociceptive responses in intra-dPAG saline-injected animals, except for the rearing frequency that was increased by the nNOS inhibitor. These results strongly suggest the involvement of NO within the PAG in the antinociceptive and defensive reactions induced by local glutamate NMDA receptor activation in this midbrain structure. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The hypothalamus plays especially important roles in various endocrine, autonomic, and behavioral responses that guarantee the survival of both the individual and the species. In the rat, a distinct hypothalamic defensive circuit has been defined as critical for integrating predatory threats, raising an important question as to whether this concept could be applied to other prey species. To start addressing this matter, in the present study, we investigated, in another prey species (the mouse), the pattern of hypothalamic Fos immunoreactivity in response to exposure to a predator (a rat, using the Rat Exposure Test). During rat exposure, mice remained concealed in the home chamber for a longer period of time and increased freezing and risk assessment activity. We were able to show that the mouse and the rat present a similar pattern of hypothalamic activation in response to a predator. of particular note, similar to what has been described for the rat, we observed in the mouse that predator exposure induces a striking activation in the elements of the medial hypothalamic defensive system, namely, the anterior hypothalamic nucleus, the dorsomedial part of the ventromedial hypothalamic nucleus and the dorsal premammillary nucleus. Moreover, as described for the rat, predator-exposed mice also presented increased Fos levels in the autonomic and parvicellular parts of the paraventricular hypothalamic nucleus, lateral preoptic area and subfornical region of the lateral hypothalamic area. In conclusion, the present data give further support to the concept that a specific hypothalamic defensive circuit should be preserved across different prey species. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Shrimp farming in Brazil is a consolidated activity, having brought economical and social gains to several states with the largest production concentrated in the northeast. This fact is also reflected in higher feed intake, necessitating a more efficient feed management. Currently, management techniques already foresee food loss due to molting. In this sense, studies relating shrimp s digestive physiology, molting physiology and behavioral response of shrimp feed can optimize the feed management. Thus, our study aimed to evaluate the behavioral response of the marine shrimp L. vannamei (Crustacea: Penaeidae) in accordance with the stages of moulting cycle and feeding schedules based on higher or lower activity of proteolytic digestive enzymes; also, to investigate the influence of feeding schedule on hepatosomatic index and non-specific and specific protease activity (trypsin). Experiments were carried out at the Laboratory of Shrimp Behavioral Studies at UFRN in partnership with the Laboratory of Enzimology UFPE. Juveniles of L. vannamei weighting 5.25 g (+ 0.25 g) were kept in aquaria at a density of 33 shrimp m -2. In the first experiment, shrimp were fed in the light phase or in the dark phase for 8 days; in the ninth day, the animals were observed for 15 minutes every hour during the 12 hours of each phase of the photoperiod. We recorded the frequency of inactivity, exploration, food intake, burrowing, swimming and crawling behavior. At the end of the 12th observation session, the shrimp were sacrified and classified by the method of setogenesis in the molt cycle stages A, B, C, D0, D1, D2 or D3. We found that the shrimp in A stage show high levels of inactivity. Moreover, the frequency of food intake was very low. The shrimp in D3 stage also had low food intake and high inactivity associated with elevated frequencies of burrowing. In the second experiment, shrimp were kept in physiological acclimation to experimental conditions for 28 days, distributed in 12 treatments in the light phase and 12 treatments in the dark phase. In the end, the animals were sacrified and dissected to assess non-specific and specific protease activity (trypsin) activity. In general, these parameters did not vary among animals fed in the light phase and those fed in the dark phase. However, significant differences were found in the activity of specific and nonspecific proteases in relation to food treatment. In the light phase, the major proteolytic activities converged to 10 hours after the start of the light phase, while the lowest activities converged to 6 hours after the beginning of this phase. In the dark phase, the highest enzyme activity converged to 12 hours after the onset of phase, while the lowest activities converged to 3 hours after the onset of phase. In the third experiment, we sought to evaluate the behavioral responses of shrimp in relation to dietary treatments based on higher or lower activity of proteolytic enzymes, considering the results of the second experiment. The behavioral categories observed were the same as the ones in the first experiment, with observations of 30 minutes (15min before and 15min after food supply). We found variation in behavioral responses as a function of the treatments, with greater intake of food in shrimp fed during the period of greatest activity of proteolytic enzymes, in the light phase. Thus we see that periodic events associated with the shrimp s physiology interfere in their behavioral responses, revealing situations that are more adjustable to the provision of food, and consequently optimizing feeding management
Resumo:
Understanding the behavioral activities of freshwater shrimp in captivity is of paramount importance for the appropriate management of the species. In Brazil, the shrimp Macrobrachium rosenbergii is currently the most widely used species in the freshwater shrimp culture due to its high potential for cultivation and good market acceptance. Thus, the present study aimed to describe and characterize the behavioral activities of M. rosenbergii in monosex and in mixed (male and female) (manuscript 1, 2 and 3) populations and the growth performance of this species in restrictive feeding conditions and in different feeding management (manuscript 4 and 5, respectively) . Juvenile and adult shrimps were collected from ponds of the Aquaculture Station - Unidade Especializada em Ciências Agrárias - Universidade Federal do Rio Grande do Norte (UFRN), Macaíba/RN and then transferred to the Laboratório de Estudos do Comportamento do Camarão LECC (Laboratory for Shrimp Behavioral Studies) of the Universidade Federal do Rio Grande do Norte (UFRN). For each treatment , eight aquaria of 250 L (50 cm x 50 cm x 100 cm) were used in a closed recirculating water system with artificial lighting, constant aeration , continuous filtration through a biochemical and biological filter (canister filter), and fine sand as substrate . The water quality was monitored daily. The lab consisted of two rooms with artificial lighting system , controlled by a timer with dark / light cycle of 12:12 h . In manuscript 1, the behavioral categories of the species were presented through an ethogram, which described 31 behaviors, subdivided into general and agonistic behaviors. Manuscript 2 compared the behavioral profile of shrimps in male and in female monosex and mixed populations over 24 hours in laboratory. In three types (mixed, male monosex and female monosex) of populations during the light and dark phases of the 24 hour cycle, the shrimps showed higher occurrence of cleaning behavior. Manuscript 3 examined the influence of the color of the shelter on the frequency of its use and behavioral activities of shrimp in mixed, in male monosex and in female monosex populations over 24 hours. We observed that the shrimp M. rosenbergii burrow more frequently during the light phase in male monosex and mixed populations; they also tend to choose the black shelters. Female monosex populations tend to use red and orange shelters. In manuscript 4, we evaluated in laboratory the behavioral activities and growth performance of juvenile shrimps under food restriction. We observed that a mild food restriction may be used since there is no loss concerning the growth of the animals; feeding management on alternate days , compared to daily management can be financially productive both reducing labor costs and reducing the amount of feed used . Manuscript 5 evaluated the behavior of shrimps in monosex and in mixed populations, as well as the latency of reach the food according to feed offer (tray or food dispersal) . Our results indicate that animals adjust to both types of feed offer food dispersal as much as tray, but they spend more time to reach the feed when it is offered in trays (feeders). Comparing culture types (mixed, male monosex and female monosex), the latency to reach the food was lower for female monosex population. The data obtained in this study demonstrate the importance of identifying different pressures and environmental stimuli on the behavioral responses of this species. This knowledge would support management improvement to optimize the levels of animals‟ welfare, resulting in a better zootecnical performance
Resumo:
Social behavior of Guiana dolphins, Sotalia guianensis, at Pipa Beach, RN, Brazil: dynamics, sequence, breathing synchrony, and responses to dolphin watching. Social animals form groups that can range from temporary to permanent. Depending on the nature of the social relationships developed between individuals, groups present a particular social organization and the effect of these interactions shapes the activity patterns of these animals. This study investigates: (i) fission-fusion dynamics of Guiana dolphins, through the analysis of three dimensions of the social system (variation in spatial cohesion, variation in size and composition of groups), (ii) sequence, routine and behavioral stability, (iii) breathing intervals in synchronized groups and (iv) behavioral responses of the animals to dolphin watching. Systematic observations of Guiana dolphins were made from a platform located in cliffs about 25 m above sea level that surround Madeiro Bay, Pipa Beach. Sampling occurred from December 2007 to February 2009 between 0600 h and 1600 h, and the groups of Guiana dolphins were investigated according to their size (alone and group) and composition (adults, adults and juveniles, and adults and calves). According to the analysis of fission-fusion dynamics, Guiana dolphin groups frequently changed their composition, modifying their patterns of spatial grouping and cohesion every 20 minutes on average. More than 50% of the individuals maintained a distance of up to 2 m from other group members and new individuals were attracted to the group, especially during feeding, leaving it for foraging. Large groups were more unstable than small, while groups containing only adults were more stable than groups of adults and juveniles. According to the Z-score analysis to investigate the sequence and behavioral routine, lone individuals were more ! .7! ! involved in foraging and feeding, while resting was more common in groups. Foraging and feeding were more common in homogeneous groups (individuals of the same age class), while heterogeneous groups (different age classes) were often involved in socialization, displaying a broader behavioral repertoire. Foraging and resting behavior presented higher stability (continuous duration in minutes) than the other behaviors. The analysis of breathing intervals in synchronized groups showed significant differences depending on type of behavior, composition and area preference. During resting, breathing intervals were of longer duration, and groups with calves showed shorter breathing intervals than groups without calves. Lone individuals also preferred areas called corral , often used for the entrapment of fishes. The Markov chain analysis revealed behavioral changes in the presence of boats, according to the type of group composition. Groups composed of adults presented decreased resting and increased in traveling during the presence of boats. Groups of adults and juveniles showed a massive reduction of socialization, while the behavior transition probability traveling-traveling was higher in groups of adults and calves. In the presence of the boats, stability of resting was reduced by one third of its original duration and traveling more than doubled. The behavioral patterns analyzed are discussed in light of socio-ecological models concerning costs and benefits of proximity between individuals and behavioral optimization. Furthermore, significant changes in behavioral patterns indicate that Guiana dolphins, at Pipa Beach, have suffered the effects of tourism as a result of violation of rules of conduct established for the study area
Resumo:
The exposure to stressors produces physiological changes of the organism in order to adapt the individual to the environment. Depending on the type, intensity and duration, stress can affect some cognitive functions, particularly processes of learning and memory. Several studies have also proposed that some level of anxiety would be necessary for memory formation. In this context, memories of previously aversive experiences may determine the manner and intensity with which are expressed fear responses, which explains the great interest in analyzing both anxiety and memory in animals. In addition, males and females demonstrate different reactions in relation to stressful stimuli, showing different levels of anxiety and differences in processing of the acquisition, retention and recall of information. Based on this information, the present study aimed to verify the effect of stress on learning, memory and anxiety behavioral parameters in rats exposed at different types of stressors of long duration (seven consecutive days): restraint (4h/day), overcrowding (18h/day) and social isolation (18h/day) in the different phases of the estrous cycle. Our results showed that the stress induced by restraint and social isolation did not cause changes in the acquisition process, but impaired the recall of memory in rats. Furthermore, it is suggested a protective effect of sex hormones on retrieval of aversive memory, since female rats in proestrus or estrus phase, characterized by high estrogen concentrations, showed no aversive memory deficits. Furthermore, despite the increased plasma levels of corticosterone observed in female rats subjected to restraint stress and social isolation, anxiety levels were unaltered, compared to those various stress conditions. Animal models based on psychological and social stress have been extensively discussed in the literature. Correlate behavioral responses, physiological and psychological have contributed in increasing the understanding of stress-induced psychophysiological disorders