955 resultados para BEHAVIORAL ACTIVITY
Resumo:
The Horne-Östberg questionnaire partly covers some factors that may be important determinants of peak time and characterize patterns of behavior. We conducted a study for the evaluation of self-reported behavioral states (hunger sensation, availability for study, physical exercise, solving daily problems, and time preferences) as expressions of underlying cyclic activity. Three hundred and eighteen community subjects without history of medical, psychiatric, or sleep disorders were evaluated in a cross-sectional design. A self-report about daily highest level of activity was used to categorize individuals into morning, evening, and indifferently active. Time-related behavioral states were evaluated with 23 visual analog questions. The responses to most analogic questions were significantly different between morning and evening active subjects. Logistic regression analysis identified a group of behaviors more strongly associated with the self-reported activity pattern (common wake up time, highest subjective fatigue, as well as wake up, bedtime, exercise and study preferences). These findings suggested that the patterns of activity presented by normal adults were related to specific common behavioral characteristics that may contribute to peak time.
Resumo:
The aim of this study was to test the hypothesis that, during adulthood, the offspring of adolescent rats differ in emotionality, learning and memory from the offspring of adult rats. The behavior of the offspring of adolescent (age, 50-55 days) and adult rats (age, 90-95 days) was tested in the open field, activity cage, and passive and active avoidance apparatus. The latencies during training and testing in the passive avoidance apparatus of the offspring of adolescent parents were shorter than the latencies of control offspring (P<0.001 on both training and testing days). Offspring of adolescent parents showed shorter latency time in acquisition trials during active avoidance testing compared to control offspring (P<0.001). They also showed a higher number of active avoidance responses in the last four blocks of acquisition (P<0.001) and first two blocks of extinction trials (P<0.05 and P<0.001, respectively). The offspring of adolescent parents showed higher latency on the first day of testing in the open field (P<0.01) and a lower latency on the third day of testing (P<0.01). They also showed higher activity during all three days of testing (1st and 2nd day: P<0.01; 3rd day: P<0.05). The spontaneous activity of the offspring of adolescent parents in the activity cage was higher in the last three intervals of testing (P<0.001). In summary, the offspring of adolescent parents were less anxious and tended to be more active. The results of two learning and memory tests were opposite, but could be explained by a higher exploratory drive of the offspring of adolescent parents. This was probably due to chronic malnutrition stress and the disturbed mother-infant relationship in the litters of adolescent mothers.
Resumo:
The objective of the present study was to determine if the acute behavioral effects of cocaine acutely administered intraperitoneally (ip) at doses of 5, 10 and 20 mg/kg on white male CF1 mice, 90 days of age, would be influenced by leptin acutely administered ip (at doses of 5, 10 and 20 µg/kg) or by endogenous leptin production enhanced by a high-fat diet. The acute behavioral effects of cocaine were evaluated in open-field, elevated plus-maze and forced swimming tests. Results were compared between a group of 80 mice consuming a balanced diet and a high-fat diet, and a group of 80 mice fed a commercially available rodent chow formula (Ralston Purina) but receiving recombinant leptin (rLeptin) or saline ip. Both the high-fat-fed and rLeptin-treated mice showed decreased locomotion in the open-field test, spent more time in the open arms of the elevated plus-maze and showed less immobility time in the forced swimming test (F(1,68) = 7.834, P = 0.007). There was an interaction between diets and cocaine/saline treatments in locomotion (F(3,34) = 3.751, P = 0.020) and exploration (F(3,34) = 3.581, P = 0.024). These results suggest that anxiolytic effects and increased general activity were induced by leptin in cocaine-treated mice and that low leptin levels are associated with behavioral depression. Chronic changes in diet composition producing high leptin levels or rLeptin treatment may result in an altered response to cocaine in ethologic tests that measure degrees of anxiety and depression, which could be attributed to an antagonistic effect of leptin.
Resumo:
A serine proteinase with thrombin-like activity was isolated from the venom of the Central American pit viper Bothrops asper. Isolation was performed by a combination of affinity chromatography on aminobenzamidine-Sepharose and ion-exchange chromatography on DEAE-Sepharose. The enzyme accounts for approximately 0.13% of the venom dry weight and has a molecular mass of 32 kDa as determined by SDS-PAGE, and of 27 kDa as determined by MALDI-TOF mass spectrometry. Its partial amino acid sequence shows high identity with snake venom serine proteinases and a complete identity with a cDNA clone previously sequenced from this species. The N-terminal sequence of the enzyme is VIGGDECNINEHRSLVVLFXSSGFL CAGTLVQDEWVLTAANCDSKNFQ. The enzyme induces clotting of plasma (minimum coagulant dose = 4.1 µg) and fibrinogen (minimum coagulant dose = 4.2 µg) in vitro, and promotes defibrin(ogen)ation in vivo (minimum defibrin(ogen)ating dose = 1.0 µg). In addition, when injected intravenously in mice at doses of 5 and 10 µg, it induces a series of behavioral changes, i.e., loss of the righting reflex, opisthotonus, and intermittent rotations over the long axis of the body, which closely resemble the `gyroxin-like' effect induced by other thrombin-like enzymes from snake venoms.
Resumo:
Intrahippocampal administration of kainic acid (KA) induces synaptic release of neurotrophins, mainly brain-derived neurotrophic factor, which contributes to the acute neuronal excitation produced by the toxin. Two protein tyrosine kinase inhibitors, herbimycin A and K252a, were administered intracerebroventricularly, in a single dose, to attenuate neurotrophin signaling during the acute effects of KA, and their role in epileptogenesis was evaluated in adult, male Wistar rats weighing 250-300 g. The latency for the first Racine stage V seizure was 90 ± 8 min in saline controls (N = 4) which increased to 369 ± 71 and 322 ± 63 min in animals receiving herbimycin A (1.74 nmol, N = 4) and K252a (10 pmol, N = 4), respectively. Behavioral alterations were accompanied by diminished duration of EEG paroxysms in herbimycin A- and K252a-treated animals. Notwithstanding the reduction in seizure severity, cell death (60-90% of cell loss in KA-treated animals) in limbic regions was unchanged by herbimycin A and K252a. However, aberrant mossy fiber sprouting was significantly reduced in the ipsilateral dorsal hippocampus of K252a-treated animals. In this model of temporal lobe epilepsy, both protein kinase inhibitors diminished the acute epileptic activity triggered by KA and the ensuing morphological alterations in the dentate gyrus without diminishing cell loss. Our current data indicating that K252a, but not herbimycin, has an influence over KA-induced mossy fiber sprouting further suggest that protein tyrosine kinase receptors are not the only factors which control this plasticity. Further experiments are necessary to elucidate the exact signaling systems associated with this K252a effect.
Resumo:
Several lines of evidence indicate that the use of stimulant drugs, including methylphenidate (MPD), increases tobacco smoking. This has raised concerns that MPD use during adolescence could facilitate nicotine abuse. Preclinical studies have shown that repeated treatment with an addictive drug produces sensitization to that drug and usually cross-sensitization to other drugs. Behavioral sensitization has been implicated in the development of drug addiction. We examined whether repeated oral MPD administration during adolescence could induce behavioral sensitization to MPD and long-lasting cross-sensitization to nicotine. Adolescent male Wistar rats were treated orally with 10 mg/kg MPD or saline (SAL) from postnatal day (PND) 27 to 33. To evaluate behavioral sensitization to MPD in adolescent rats (PND 39), the SAL pretreated group was subdivided into two groups that received intragastric SAL (1.0 mL/kg) or MPD (10 mg/kg); MPD pretreated rats received MPD (10 mg/kg). Cross-sensitization was evaluated on PND 39 or PND 70 (adulthood). To this end, SAL- and MPD-pretreated groups received subcutaneous injections of SAL (1.0 mL/kg) or nicotine (0.4 mg/kg). All groups had 8 animals. Immediately after injections, locomotor activity was determined. The locomotor response to MPD challenge of MPD-pretreated rats was not significantly different from that of the SAL-pretreated group. Moreover, the locomotor response of MPD-pretreated rats to nicotine challenge was not significantly different from that of the SAL-pretreated group. This lack of sensitization and cross-sensitization suggests that MPD treatment during adolescence does not induce short- or long-term neuroadaptation in rats that could increase sensitivity to MPD or nicotine.
Resumo:
Anxiolytic and anxiogenic-like behavioral outcomes have been reported for methylenedioxymethamphetamine (MDMA or ecstasy) in rodents. In the present experiment, we attempted to identify behavioral, hormonal and neurochemical outcomes of MDMA treatment to clarify its effects on anxiety-related responses in 2-month-old Balb/c male mice (25-35 g; N = 7-10 mice/group). The behavioral tests used were open field, elevated plus maze, hole board, and defensive behavior against predator odor. Moreover, we also determined striatal dopamine and dopamine turnover, and serum corticosterone levels. MDMA was injected ip at 0.2, 1.0, 5.0, 8.0, 10, or 20 mg/kg. MDMA at 10 mg/kg induced the following significant (P < 0.05) effects: a) a dose-dependent increase in the distance traveled and in the time spent moving in the open field; b) decreased exploratory activity in the hole board as measured by number of head dips and time spent in head dipping; c) increased number of open arm entries and increased time spent in open arm exploration in the elevated plus maze; d) increased time spent away from an aversive stimulus and decreased number of risk assessments in an aversive odor chamber; e) increased serum corticosterone levels, and f) increased striatal dopamine level and turnover. Taken together, these data suggest an anxiogenic-like effect of acute MDMA treatment, despite the fact that behavioral anxiety expression was impaired in some of the behavioral tests used as a consequence of the motor stimulating effects of MDMA.
Resumo:
The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female reproduction
Resumo:
Cocaine sensitization is a marker for some facets of addiction, is greater in female rats, and may be influenced by their sex hormones. We compared the modulatory effects of endogenous or exogenous estradiol and progesterone on cocaine-induced behavioral sensitization in 106 female rats. Ovariectomized female rats received progesterone (0.5 mg/mL), estradiol (0.05 mg/mL), progesterone plus estradiol, or the oil vehicle. Sham-operated control females received oil. Control and acute subgroups received injections of saline, while the repeated group received cocaine (15 mg/kg, ip) for 8 days. After 10 days, the acute and repeated groups received a challenge dose of cocaine, after which locomotion and stereotypy were monitored. The estrous cycle phase was evaluated and blood was collected to verify hormone levels. Repeated cocaine treatment induced overall behavioral sensitization in female rats, with increased locomotion and stereotypies. In detailed analysis, ovariectomized rats showed no locomotor sensitization; however, the sensitization of stereotypies was maintained. Only females with endogenous estradiol and progesterone demonstrated increased locomotor activity after cocaine challenge. Estradiol replacement enhanced stereotyped behaviors after repeated cocaine administration. Cocaine sensitization of stereotyped behaviors in female rats was reduced after progesterone replacement, either alone or concomitant with estradiol. The behavioral responses (locomotion and stereotypy) to cocaine were affected differently, depending on whether the female hormones were of an endogenous or exogenous origin. Therefore, hormonal cycling appears to be an important factor in the sensitization of females. Although estradiol increases the risk of cocaine sensitization, progesterone warrants further study as a pharmacological treatment in the prevention of psychostimulant abuse.
Resumo:
There is an increasing demand for individualized, genotype-based health advice. The general population-based dietary recommendations do not always motivate people to change their life-style, and partly following this, cardiovascular diseases (CVD) are a major cause of death in worldwide. Using genotype-based nutrition and health information (e.g. nutrigenetics) in health education is a relatively new approach, although genetic variation is known to cause individual differences in response to dietary factors. Response to changes in dietary fat quality varies, for example, among different APOE genotypes. Research in this field is challenging, because several non-modifiable (genetic, age, sex) and modifiable (e.g. lifestyle, dietary, physical activity) factors together and with interaction affect the risk of life-style related diseases (e.g. CVD). The other challenge is the psychological factors (e.g. anxiety, threat, stress, motivation, attitude), which also have an effect on health behavior. The genotype-based information is always a very sensitive topic, because it can also cause some negative consequences and feelings (e.g. depression, increased anxiety). The aim of this series of studies was firstly to study how individual, genotype-based health information affects an individual’s health form three aspects, and secondly whether this could be one method in the future to prevent lifestyle-related diseases, such as CVD. The first study concentrated on the psychological effects; the focus of the second study was on health behavior effects, and the third study concentrated on clinical effects. In the fourth study of this series, the focus was on all these three aspects and their associations with each other. The genetic risk and health information was the APOE gene and its effects on CVD. To study the effect of APOE genotype-based health information in prevention of CVD, a total of 151 volunteers attended the baseline assessments (T0), of which 122 healthy adults (aged 20 – 67 y) passed the inclusion criteria and started the one-year intervention. The participants (n = 122) were randomized into a control group (n = 61) and an intervention group (n = 61). There were 21 participants in the intervention Ɛ4+ group (including APOE genotypes 3/4 and 4/4) and 40 participants in the intervention Ɛ4- group (including APOE genotypes 2/3 and 3/3). The control group included 61 participants (including APOE genotypes 3/4, 4/4, 2/3, 3/3 and 2/2). The baseline (T0) and follow-up assessments (T1, T2, T3) included detailed measurements of psychological (threat and anxiety experience, stage of change), and behavioral (dietary fat quality, consumption of vegetables, - high fat/sugar foods and –alcohol, physical activity and health and taste attitudes) and clinical factors (total-, LDL- HDL cholesterol, triglycerides, blood pressure, blood glucose (0h and 2h), body mass index, waist circumference and body fat percentage). During the intervention six different communication sessions (lectures on healthy lifestyle and nutrigenomics, health messages by mail, and personal discussion with the doctor) were arranged. The intervention groups (Ɛ4+ and Ɛ4-) received their APOE genotype information and health message at the beginning of the intervention. The control group received their APOE genotype information after the intervention. For the analyses in this dissertation, the results for 106/107 participants were analyzed. In the intervention, there were 16 participants in the high-risk (Ɛ4+) group and 35 in the low-risk (Ɛ4-) group. The control group had 55 participants in studies III-IV and 56 participants in studies I-II. The intervention had both short-term (≤ 6 months) and long-term (12 months) effects on health behavior and clinical factors. The short-term effects were found in dietary fat quality and waist circumference. Dietary fat quality improved more in the Ɛ4+ group than the Ɛ4- and the control groups as the personal, genotype-based health information and waist circumference lowered more in the Ɛ4+ group compared with the control group. Both these changes differed significantly between the Ɛ4+ and control groups (p<0.05). A long-term effect was found in triglyceride values (p<0.05), which lowered more in Ɛ4+ compared with the control group during the intervention. Short-term effects were also found in the threat experience, which increased mostly in the Ɛ4+ group after the genetic feedback (p<0.05), but it decreased after 12 months, although remaining at a higher level compared to the baseline (T0). In addition, Study IV found that changes in the psychological factors (anxiety and threat experience, motivation), health and taste attitudes, and health behaviors (dietary, alcohol consumption, and physical activity) did not directly explain the changes in triglyceride values and waist circumference. However, change caused by a threat experience may have affected the change in triglycerides through total- and HDL cholesterol. In conclusion, this dissertation study has given some indications that individual, genotypebased health information could be one potential option in the future to prevent lifestyle-related diseases in public health care. The results of this study imply that personal genetic information, based on APOE, may have positive effects on dietary fat quality and some cardiovascular risk markers (e.g., improvement in triglyceride values and waist circumference). This study also suggests that psychological factors (e.g. anxiety and threat experience) may not be an obstacle for healthy people to use genotype-based health information to promote healthy lifestyles. However, even in the case of very personal health information, in order to achieve a permanent health behavior change, it is important to include attitudes and other psychological factors (e.g. motivation), as well as intensive repetition and a longer intervention duration. This research will serve as a basis for future studies and its information can be used to develop targeted interventions, including health information based on genotyping that would aim at preventing lifestyle diseases. People’s interest in personalized health advices has increased, while also the costs of genetic screening have decreased. Therefore, generally speaking, it can be assumed that genetic screening as a part of the prevention of lifestyle-related diseases may become more common in the future. In consequence, more research is required about how to make genetic screening a practical tool in public health care, and how to efficiently achieve long-term changes.
Resumo:
Affiliation: Margaret Cargo : Département de médecine sociale et préventive, Faculté de médecine, Université de Montréal
Resumo:
Affiliation: J. O'Loughlin: Department of Social and Preventive Medicine, Centre de recherche CHUM, Université de Montréal
Resumo:
Les cortices sensoriels sont des régions cérébrales essentielles pour la perception. En particulier, le cortex visuel traite l’information visuelle en provenance de la rétine qui transite par le thalamus. Les neurones sont les unités fonctionnelles qui transforment l'information sensorielle en signaux électriques, la transfèrent vers le cortex et l'intègrent. Les neurones du cortex visuel sont spécialisés et analysent différents aspects des stimuli visuels. La force des connections entre les neurones peut être modulée par la persistance de l'activité pré-synaptique et induit une augmentation ou une diminution du signal post-synaptique à long terme. Ces modifications de la connectivité synaptique peuvent induire la réorganisation de la carte corticale, c’est à dire la représentation de ce stimulus et la puissance de son traitement cortical. Cette réorganisation est connue sous le nom de plasticité corticale. Elle est particulièrement active durant la période de développement, mais elle s’observe aussi chez l’adulte, par exemple durant l’apprentissage. Le neurotransmetteur acétylcholine (ACh) est impliqué dans de nombreuses fonctions cognitives telles que l’apprentissage ou l’attention et il est important pour la plasticité corticale. En particulier, les récepteurs nicotiniques et muscariniques du sous-type M1 et M2 sont les récepteurs cholinergiques impliqués dans l’induction de la plasticité corticale. L’objectif principal de la présente thèse est de déterminer les mécanismes de plasticité corticale induits par la stimulation du système cholinergique au niveau du télencéphale basal et de définir les effets sur l’amélioration de la perception sensorielle. Afin d’induire la plasticité corticale, j’ai jumelé des stimulations visuelles à des injections intracorticales d’agoniste cholinergique (carbachol) ou à une stimulation du télencéphale basal (neurones cholinergiques qui innervent le cortex visuel primaire). J'ai analysé les potentiels évoqués visuels (PEVs) dans le cortex visuel primaire des rats pendant 4 à 8 heures après le couplage. Afin de préciser l’action de l’ACh sur l’activité des PEVs dans V1, j’ai injecté individuellement l’antagoniste des récepteurs muscariniques, nicotiniques, α7 ou NMDA avant l’infusion de carbachol. La stimulation du système cholinergique jumelée avec une stimulation visuelle augmente l’amplitude des PEVs durant plus de 8h. Le blocage des récepteurs muscarinique, nicotinique et NMDA abolit complètement cette amélioration, tandis que l’inhibition des récepteurs α7 a induit une augmentation instantanée des PEVs. Ces résultats suggèrent que l'ACh facilite à long terme la réponse aux stimuli visuels et que cette facilitation implique les récepteurs nicotiniques, muscariniques et une interaction avec les récepteur NMDA dans le cortex visuel. Ces mécanismes sont semblables à la potentiation à long-terme, évènement physiologique lié à l’apprentissage. L’étape suivante était d’évaluer si l’effet de l’amplification cholinergique de l’entrée de l’information visuelle résultait non seulement en une modification de l’activité corticale mais aussi de la perception visuelle. J’ai donc mesuré l’amélioration de l’acuité visuelle de rats adultes éveillés exposés durant 10 minutes par jour pendant deux semaines à un stimulus visuel de type «réseau sinusoïdal» couplé à une stimulation électrique du télencéphale basal. L’acuité visuelle a été mesurée avant et après le couplage des stimulations visuelle et cholinergique à l’aide d’une tâche de discrimination visuelle. L’acuité visuelle du rat pour le stimulus d’entrainement a été augmentée après la période d’entrainement. L’augmentation de l’acuité visuelle n’a pas été observée lorsque la stimulation visuelle seule ou celle du télencéphale basal seul, ni lorsque les fibres cholinergiques ont été lésées avant la stimulation visuelle. Une augmentation à long terme de la réactivité corticale du cortex visuel primaire des neurones pyramidaux et des interneurones GABAergiques a été montrée par l’immunoréactivité au c-Fos. Ainsi, lorsque couplé à un entrainement visuel, le système cholinergique améliore les performances visuelles pour l’orientation et ce probablement par l’optimisation du processus d’attention et de plasticité corticale dans l’aire V1. Afin d’étudier les mécanismes pharmacologiques impliqués dans l’amélioration de la perception visuelle, j’ai comparé les PEVs avant et après le couplage de la stimulation visuelle/cholinergique en présence d’agonistes/antagonistes sélectifs. Les injections intracorticales des différents agents pharmacologiques pendant le couplage ont montré que les récepteurs nicotiniques et M1 muscariniques amplifient la réponse corticale tandis que les récepteurs M2 muscariniques inhibent les neurones GABAergiques induisant un effet excitateur. L’infusion d’antagoniste du GABA corrobore l’hypothèse que le système inhibiteur est essentiel pour induire la plasticité corticale. Ces résultats démontrent que l’entrainement visuel jumelé avec la stimulation cholinergique améliore la plasticité corticale et qu’elle est contrôlée par les récepteurs nicotinique et muscariniques M1 et M2. Mes résultats suggèrent que le système cholinergique est un système neuromodulateur qui peut améliorer la perception sensorielle lors d’un apprentissage perceptuel. Les mécanismes d’amélioration perceptuelle induits par l’acétylcholine sont liés aux processus d’attention, de potentialisation à long-terme et de modulation de la balance d’influx excitateur/inhibiteur. En particulier, le couplage de l’activité cholinergique avec une stimulation visuelle augmente le ratio de signal / bruit et ainsi la détection de cibles. L’augmentation de la concentration cholinergique corticale potentialise l’afférence thalamocorticale, ce qui facilite le traitement d’un nouveau stimulus et diminue la signalisation cortico-corticale minimisant ainsi la modulation latérale. Ceci est contrôlé par différents sous-types de récepteurs cholinergiques situés sur les neurones GABAergiques ou glutamatergiques des différentes couches corticales. La présente thèse montre qu’une stimulation électrique dans le télencéphale basal a un effet similaire à l’infusion d’agoniste cholinergique et qu’un couplage de stimulations visuelle et cholinergique induit la plasticité corticale. Ce jumelage répété de stimulations visuelle/cholinergique augmente la capacité de discrimination visuelle et améliore la perception. Cette amélioration est corrélée à une amplification de l’activité neuronale démontrée par immunocytochimie du c-Fos. L’immunocytochimie montre aussi une différence entre l’activité des neurones glutamatergiques et GABAergiques dans les différentes couches corticales. L’injection pharmacologique pendant la stimulation visuelle/cholinergique suggère que les récepteurs nicotiniques, muscariniques M1 peuvent amplifier la réponse excitatrice tandis que les récepteurs M2 contrôlent l’activation GABAergique. Ainsi, le système cholinergique activé au cours du processus visuel induit des mécanismes de plasticité corticale et peut ainsi améliorer la capacité perceptive. De meilleures connaissances sur ces actions ouvrent la possibilité d’accélérer la restauration des fonctions visuelles lors d’un déficit ou d’amplifier la fonction cognitive.
Resumo:
Semantic memory recruits an extensive neural network including the left inferior prefrontal cortex (IPC) and the left temporoparietal region, which are involved in semantic control processes, as well as the anterior temporal lobe region (ATL) which is considered to be involved in processing semantic information at a central level. However, little is known about the underlying neuronal integrity of the semantic network in normal aging. Young and older healthy adults carried out a semantic judgment task while their cortical activity was recorded using magnetoencephalography (MEG). Despite equivalent behavioral performance, young adults activated the left IPC to a greater extent than older adults, while the latter group recruited the temporoparietal region bilaterally and the left ATL to a greater extent than younger adults. Results indicate that significant neuronal changes occur in normal aging, mainly in regions underlying semantic control processes, despite an apparent stability in performance at the behavioral level.
Resumo:
Introduction Provoked vestibulodynia (PVD), a recurrent, localized vulvovaginal pain problem, carries a significant psychosexual burden for afflicted women, who report impoverished sexual function and decreased frequency of sexual activity and pleasure. Interpersonal factors such as partner responses to pain, partner distress, and attachment style are associated with pain outcomes for women and with sexuality outcomes for both women and partners. Despite these findings, no treatment for PVD has systematically included the partner. Aims This study pilot‐tested the feasibility and potential efficacy of a novel cognitive–behavioral couple therapy (CBCT) for couples coping with PVD. Methods Couples (women and their partners) in which the woman was diagnosed with PVD (N = 9) took part in a 12‐session manualized CBCT intervention and completed outcome measures pre‐ and post‐treatment. Main Outcome Measures The primary outcome measure was women's pain intensity during intercourse as measured on a numerical rating scale. Secondary outcomes included sexual functioning and satisfaction for both partners. Exploratory outcomes included pain‐related cognitions; psychological outcomes; and treatment satisfaction, feasibility, and reliability. Results One couple separated before the end of therapy. Paired t‐test comparisons involving the remaining eight couples demonstrated significant improvements in women's pain and sexuality outcomes for both women and partners. Exploratory analyses indicated improvements in pain‐related cognitions, as well as anxiety and depression symptoms, for both members of the couple. Therapists' reported high treatment reliability and participating couples' high participation rates and reported treatment satisfaction indicate adequate feasibility. Conclusions Treatment outcomes, along with treatment satisfaction ratings, confirm the preliminary success of CBCT in reducing pain and psychosexual burden for women with PVD and their partners. Further large‐scale randomized controlled trials are necessary to examine the efficacy of CBCT compared with and in conjunction with first‐line biomedical interventions for PVD.