957 resultados para BACTERIAL COMMUNITY COMPOSITION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular biological methods were used to investigate the microbial diversity and community structure in intertidal sandy sediments near the island of Sylt (Wadden Sea) at a site which was characterized for transport and mineralization rates in de Beer et al., (2005, hdl:10013/epic.21375). The sampling was performed during low tide in the middle of the flat, approximately 40 m in the offshore direction from the high water line on October 6, 1999, March 7, 2000, and July 5, 2000. Two parallel cores were collected from each season for molecular analyses. Within 2 h after sampling the sediment cores were sub-sampled and fixed in formaldehyde for FISH analysis. The cells were hybridized, stained with 4',6'-diamidino-2-phenylindole (DAPI) and microscopically counted as described previously [55]. Details of probes and formamide concentrations which were used are shown in further details. Counts are reported as means calculated from 10-15 randomly chosen microscopic fields corresponding to 700-1000 DAPI-stained cells. Values were corrected for the signals counted with the probe NON338. Fluorescence in situ hybridization (FISH)with group-specific rRNA-targeted oligonucleotide probes were used to characterize the microbial community structure over depth (0-12 cm) and seasons (March, July, October). We found high abundances of bacteria with total cell numbers up to 3×109 cells ml-1 and a clear seasonal variation, with higher values in July and October versus March. The microbial community was dominated by members of the Planctomycetes, the Cytophaga/Flavobacterium group, Gammaproteobacteria, and bacteria of the Desulfosarcina/Desulfococcus group. The high abundance (1.5×10**7 - 1.8×10**8 cells/ml accounting for 3-19% of all cells) of presumably aerobic heterotrophic polymer-degrading planctomycetes is in line with the high permeability, deep oxygen penetration, and the high rates of aerobic mineralization of algal biomass measured in the sandy sediments by de Beer et al., (2005, hdl:10013/epic.21375). The high and stable abundance of members of the Desulfosarcina/Desulfococcus group, both over depth and season, suggests that these bacteria may play a more important role than previously assumed based on low sulfate reduction rates in parallel cores de Beer et al., (2005).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ponds are common and abundant landscape features in temperate environments, particularly on floodplains where lateral connectivity with riverine systems persists. Despite their widespread occurrence and importance to regional diversity, research on the ecology and hydrology of temperate ephemeral and perennial floodplain ponds lags behind that of other shallow waterbodies. This study examines the aquatic macroinvertebrate diversity of 34 ponds (20 perennial and 14 ephemeral) on two unregulated riverine floodplain meadows in Leicestershire, UK. Perennial ponds supported nearly twice the diversity of ephemeral ponds. Despite frequent inundation of floodwater and connectivity with other floodplain waterbodies, ephemeral ponds supported distinct invertebrate communities when compared to perennial ponds. When the relative importance of physical and chemical, biological and spatial characteristics was examined, physical and chemical characteristics were found to account for more variation in community composition than biological or spatial variables. The results suggest that niche characteristics rather than neutral colonisation processes dominate the structure of invertebrate communities of floodplain ponds. The maintenance of pond networks with varying hydroperiod lengths and environmental characteristics should be encouraged as part of conservation management strategies to provide heterogeneous environmental conditions to support and enhance aquatic biodiversity at a landscape scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A significant gap, in not only peramelid nutritional physiology but marsupial nutrition as a whole, is the lack of information relating to microorganisms of the gastrointestinal tract. This research is a preliminary investigation that will provide a baseline for comparisons among peramelids. The high degree of 16S rRNA gene clones identified in this research that are closely related to culturable bacteria suggests that additional research will enable a more complete description of the gastrointestinal bacteria of I. macrourus. Most identifiable clones belonged to Clostridium and Ruminococcus. This research has confirmed that the hindgut of I. macrourus, the caecum, proximal colon and distal colon, are the main sites for microbial activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil horizons below 30 cm depth contain about 60% of the organic carbon stored in soils. Although insight into the physical and chemical stabilization of soil organic matter (SUM) and into microbial community composition in these horizons is being gained, information on microbial functions of subsoil microbial communities and on associated microbially-mediated processes remains sparse. To identify possible controls on enzyme patterns, we correlated enzyme patterns with biotic and abiotic soil parameters, as well as with microbial community composition, estimated using phospholipid fatty acid profiles. Enzyme patterns (i.e. distance-matrixes calculated from these enzyme activities) were calculated from the activities of six extracellular enzymes (cellobiohydrolase, leucine-amino-peptidase, N-acetylglucosaminidase, chitotriosidase, phosphatase and phenoloxidase), which had been measured in soil samples from organic topsoil horizons, mineral topsoil horizons, and mineral subsoil horizons from seven ecosystems along a 1500 km latitudinal transect in Western Siberia. We found that hydrolytic enzyme activities decreased rapidly with depth, whereas oxidative enzyme activities in mineral horizons were as high as, or higher than in organic topsoil horizons. Enzyme patterns varied more strongly between ecosystems in mineral subsoil horizons than in organic topsoils. The enzyme patterns in topsoil horizons were correlated with SUM content (i.e., C and N content) and microbial community composition. In contrast, the enzyme patterns in mineral subsoil horizons were related to water content, soil pH and microbial community composition. The lack of correlation between enzyme patterns and SUM quantity in the mineral subsoils suggests that SOM chemistry, spatial separation or physical stabilization of SUM rather than SUM content might determine substrate availability for enzymatic breakdown. The correlation of microbial community composition and enzyme patterns in all horizons, suggests that microbial community composition shapes enzyme patterns and might act as a modifier for the usual dependency of decomposition rates on SUM content or C/N ratios. (C) 2015 The Authors. Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Western Pacific hydrothermal vents will soon be subjected to deep-sea mining and peripheral sites are considered the most practical targets. The limited information on community dynamics and temporal change in these communities makes it difficult to anticipate the impact of mining activities and recovery trajectories. We studied community composition of peripheral communities along a cline in hydrothermal chemistry on the Eastern Lau Spreading Center and Valu Fa Ridge (ELSC-VFR) and also studied patterns of temporal change. Peripheral communities located in the northern vent fields of the ELSC-VFR are significantly different from those in the southern vent fields. Higher abundances of zoanthids and anemones were found in northern peripheral sites and the symbiont-containing mussel Bathymodiolus brevior, brisingid seastars and polynoids were only present in the northern peripheral sites. By contrast, certain faunal groups were seen only in the southern peripheral sites, such as lollipop sponges, pycnogonids and ophiuroids. Taxonomic richness of the peripheral communities was similar to that of active vent communities, due to the presence of non-vent endemic species that balanced the absence of species found in areas of active venting. The communities present at waning active sites resemble those of peripheral sites, indicating that peripheral species can colonize previously active vent sites in addition to settling in the periphery of areas of venting. Growth and mortality were observed in a number of the normally slow-growing cladorhizid stick sponges, indicating that these animals may exhibit life history strategies in the vicinity of vents that differ from those previously recorded. A novel facultative association between polynoids and anemones is proposed based on their correlated distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The marine diatom Haslea ostrearia produces a water-soluble blue-pigment named marennine of economic interest (e.g. in aquaculture for the greening of oysters). Up to date the studies devoted to ecological conditions under which this microalga develops never took into account the bacterial-H. ostrearia relationships. In this study the bacterial community was analysed by PCR-TTGE before and after H. ostrearia isolation cells recovered from 4 localities, to distinguish the relative part of the biotope and the biocenose and eventually to describe the temporal dynamic of the structure of the bacterial community. The bacterial structure of the phycosphere differed strongly from that of the bulk sediment. The similarity between bacteria recovered from the biofilm and the suspended bacteria did not exceed 10% (vs. > 90% amongst biofilms). The differences in genetic fingerprints, more especially high between two H. ostrearia isolates showed also the highest differences in the bacterial structure as the result of specific metabolomics profiles. The non-targeted metabolomic investigation showed that these profiles were more distinct in case of bacteria-alga associations than for the H. ostrearia monoculture. At the scale of a culture cycle in laboratory conditions, the bacterial community was specific to the growth stage. When H. ostrearia was subcultured for 9 months, a shift in the bacterial structure was shown from 3-months subculturing and the bacterial structure stabilized afterwards (70-86% similarities). A first insight of the relationships between H. ostrearia and its surrounding bacteria was shown for a better understanding of the ecological feature of this diatom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microorganisms in the plant rhizosphere, the zone under the influence of roots, and phyllosphere, the aboveground plant habitat, exert a strong influence on plant growth, health, and protection. Tomatoes and cucumbers are important players in produce safety, and the microbial life on their surfaces may contribute to their fitness as hosts for foodborne pathogens such as Salmonella enterica and Listeria monocytogenes. External factors such as agricultural inputs and environmental conditions likely also play a major role. However, the relative contributions of the various factors at play concerning the plant surface microbiome remain obscure, although this knowledge could be applied to crop protection from plant and human pathogens. Recent advances in genomic technology have made investigations into the diversity and structure of microbial communities possible in many systems and at multiple scales. Using Illumina sequencing to profile particular regions of the 16S rRNA gene, this study investigates the influences of climate and crop management practices on the field-grown tomato and cucumber microbiome. The first research chapter (Chapter 3) involved application of 4 different soil amendments to a tomato field and profiling of harvest-time phyllosphere and rhizosphere microbial communities. Factors such as water activity, soil texture, and field location influenced microbial community structure more than soil amendment use, indicating that field conditions may exert more influence on the tomato microbiome than certain agricultural inputs. In Chapter 4, the impact of rain on tomato and cucumber-associated microbial community structures was evaluated. Shifts in bacterial community composition and structure were recorded immediately following rain events, an effect which was partially reversed after 4 days and was strongest on cucumber fruit surfaces. Chapter 5 focused on the contribution of insect visitors to the tomato microbiota, finding that insects introduced diverse bacterial taxa to the blossom and green tomato fruit microbiome. This study advances our understanding of the factors that influence the microbiomes of tomato and cucumber. Farms are complex environments, and untangling the interactions between farming practices, the environment, and microbial diversity will help us develop a comprehensive understanding of how microbial life, including foodborne pathogens, may be influenced by agricultural conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monochamus beetles are the dispersing vectors of the nematode Bursaphelenchus xylophilus, the causative agent of pine wilt disease (PWD). PWD inflicts significant damages in Eurasian pine forests. Symbiotic microorganisms have a large influence in insect survival. The aim of this study was to characterize the bacterial community associated to PWD vectors in Europe and East Asia using a culture-independent approach. Twenty-three Monochamus galloprovincialiswere collected in Portugal (two different locations); twelve Monochamus alternatus were collected in Japan. DNA was extracted from the insects’ tracheas for 16S rDNA analysis through denaturing gradient gel electrophoresis and barcoded pyrosequencing. Enterobacteriales, Pseudomonadales, Vibrionales and Oceanospirilales were present in all samples. Enterobacteriaceae was represented by 52.2% of the total number of reads. Twenty-three OTUs were present in all locations. Significant differences existed between the microbiomes of the two insect species while for M. galloprovincialis there were no significant differences between samples from different Portuguese locations. This study presents a detailed description of the bacterial community colonizing the Monochamus insects’ tracheas. Several of the identified bacterial groups were described previously in association with pine trees and B. xylophilus, and their previously described functions suggest that they may play a relevant role in PWD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary : Mining activities produce enormous amounts of waste material known as tailings which are composed of fine to medium size particles. These tailings often contain sulfides, which oxidation can lead to acid and metal contamination of water; therefore they need to be remediated. In this work a tailings bioremediation approach was investigated by an interdisciplinary study including geochemistry, mineralogy and microbiology. The aim of the work was to study the effect of the implementation of wetland above oxidizing tailings on the hydrogeology and the biogeochemical element cycles, and to assess the system evolution over time. To reach these goals, biogeochemical processes occurring in a marine shore tailings deposit were investigated. The studied tailings deposit is located at the Bahìa de Ite, Pacific Ocean, southern Peru, where between 1940 and 1996 the tailings were discharged from the two porphyry copper mines Cuajone and Toquepala. After the end of deposition, a remediation approach was initiated in 1997 with a wetland implementation above the oxidizing tailings. Around 90% of the tailings deposits (total 16 km2) were thus remediated, except the central delta area and some areas close to the shoreline. The multi-stable isotope study showed that the tailings were saturated with fresh water in spite of the marine setting, due to the high hydraulic gradient resulting from the wetland implementation. Submarine groundwater discharge (SGD) was the major source of SO4 2-, C1-, Na+, Fe2+, and Mn2+ input into the tailings at the original shelf-seawater interface. The geochemical study (aquatic geochemistry and X-Ray diffraction (XRD) and sequential extractions from the solid fraction) showed that iron and sulfur oxidation were the main processes in the non-remediated tailings, which showed a top a low-pH oxidation zone with strong accumulation of efflorescent salts at the surface due to capillary upward transport of heavy metals (Fe, Cu, Zn, Mn, Cd, Co, and Ni) in the arid climate. The study showed also that the implementation of the wetland resulted in very low concentrations of heavy metals in solution (mainly under the detection limit) due to the near neutral pH and more reducing conditions (100-150 mV). The heavy metals, which were taken from solution, precipitated as hydroxides and sulfides or were bound to organic matter. The bacterial community composition analysis by Terminal Restriction Fragment Length Polymorphism (T-RFLP) and cloning and sequencing of 16S rRNA genes combined with a detailed statistical analysis revealed a high correlation between the bacterial distribution and the geochemical variables. Acidophilic autotrophic oxidizing bacteria were dominating the oxidizing tailings, whereas neutrophilic and heterotrophic reducing bacteria were driving the biogeochemical processes in the remediated tailings below the wetland. At the subsurface of the remediated tailings, an iron cycling was highlighted with oxidation and reduction processes due to micro-aerophilic niches provided by the plant rhizosphere in this overall reducing environment. The in situ bioremediation experiment showed that the main parameter to take into account for the effectiveness was the water table and chemistry which controls the system. The constructed remediation cells were more efficient and rapid in metal removal when saturation conditions were available. This study showed that the bioremediation by wetland implementation could be an effective and rapid treatment for some sulfidic mine tailings deposits. However, the water saturation of the tailings has to be managed on a long-term basis in order to guarantee stability. Résumé : L'activité minière produit d'énormes quantités de déchets géologiques connus sous le nom de « tailings » composées de particules de taille fine à moyenne. Ces déchets contiennent souvent des sulfures dont l'oxydation conduit à la formation d'effluents acides contaminés en métaux, d'où la nécessité d'effectuer une remédiation des sites de stockage concernés. Le but de ce travail est dans un premier temps d'étudier l'effet de la bio-remédiation d'un dépôt de tailings oxydés sur l'hydrogéologie du système et les cycles biogéochimiques des éléments et en second lieu, d'évaluer l'évolution du processus de remédiation dans le temps. Le site étudié dans ce travail est situé dans la Bahía de Ite, au sud du Pérou, au bord de l'Océan Pacifique. Les déchets miniers en question sont déposés dans un environnement marin. De 1940 à 1996, les déchets de deux mines de porphyre cuprifère - Cuajone et Toquepala - ont été acheminés sur le site via la rivière Locumba. En 1997, une première remédiation a été initiée avec la construction d'une zone humide sur les tailings. Depuis, environ 90% de la surface du dépôt (16 km2) a été traité, les parties restantes étant la zone centrale du delta du Locumba et certaines zones proches de la plage. Malgré la proximité de l'océan, les études isotopiques menées dans le cadre de ce travail ont montré que les tailings étaient saturés en eau douce. Cette saturation est due à la pression hydraulique résultant de la mise en place des zones humides. Un écoulement d'eau souterrain sous-marin a été à détecté à l'interface entre les résidus et l'ancien fond marin. En raison de la géologie locale, il constitue une source d'entrée de SO4 2-, Cl-, Na+, FeZ+, et Mn2+ dans le système. L'analyse de la géochimie aquatique, la Diffraction aux Rayons X (XRD) et l'extraction séquentielle ont montré que l'oxydation du fer et .des sulfures est le principal processus se produisant dans les déchets non remédiés. Ceci a entraîné le développement d'une zone d'oxydation à pH bas induisant une forte accumulation des sels efflorescents, conséquence de la migration capillaire des métaux lourds (Fe, Cu, Zn, Mn, Cd, Co et Ni) de la solution vers la surface dans ce climat aride. Cette étude a montré également que la construction de la zone humide a eu comme résultats une précipitation des métaux dans des phases minérales en raison du pH neutre et des conditions réductrices (100-150mV). Les métaux lourds ont précipité sous la forme d'hydroxydes et de sulfures ou sont adsorbés à la matière organique. L'analyse de la composition de la communauté bactérienne à l'aide la technique T-RFLP (Terminal Restriction Fragment Length Polymorphism) et par le clonage/séquençage des gènes de l'ARNr 16S a été combinée à une statistique détaillée. Cette dernière a révélé une forte corrélation entre la distribution de bactéries spécifiques et la géochimie : Les bactéries autotrophes acidophiles dominent dans les déchets oxydés non remédiés, tandis que des bactéries hétérotrophes neutrophiles ont mené les processus microbiens dans les déchets remédiés sous la zone humide. Sous la surface de la zone humide, nos analyses ont également mis en évidence un cycle du fer par des processus d'oxydoréduction rendus possibles par la présence de niches micro-aérées par la rhizosphère dans cet environnement réducteur. L'expérience de bio-remédiation in situ a montré que les paramètres clés qui contrôlent l'efficacité du traitement sont le niveau de la nappe aquifère et la chimie de l'eau. Les cellules de remédiation se sont montrées plus efficaces et plus rapides lorsque le système a pu être saturé en eau. Finalement, cette étude a montré que la bio-remédiation de déchets miniers par la construction de zones humides est un moyen de traitement efficace, rapide et peu coûteux. Cependant, la saturation en eau du système doit être gérée sur le long terme afin de garantir la stabilité de l'ensemble du système.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identification of all important community members as well as of the numerically dominant members of a community are key aspects of microbial community analysis of bioreactor samples. A systematic study was conducted with artificial consortia to test whether denaturing gradient gel electrophoresis (DGCE) is a reliable technique to obtain such community data under conditions where results would not be affected by differences in DNA extraction efficiency from cells. A total of 27 consortia were established by mixing DNA extracted from Escherichia coli K12, Burkholderia cepacia and Stenotrophomonas maltophilia in different proportions. Concentrations of DNA of single organisms in the consortia were either 0.04, 0.4 or 4 ng/mu l. DGGE-PCR of genomic DNA with primer sets targeted at the V3 and V6-V8 regions of the 16S rDNA failed to detect the three community members in only 7% of consortia, but provided incorrect information about dominance or co-dominance for 85% and 89% of consortia with the primer sets for the V6-V8 and V3 regions, respectively. The high failure rate in detection of dominant B. cepacia with the primers for the V6-V8 region was attributable to a single nucleoticle primer mismatch in the target sequences of both, the forward and reverse primer. Amplification bias in PCR of E. coli and S. maltophilia for the V6-V8 region and for all three organisms for the V3 region occurred due to interference of genomic DNA in PCR-DGGE, since a nested PCR approach, where PCR-DGGE was started from mixtures of 16S rRNA genes of the organisms, provided correct information about the relative abundance of original DNA in the sample. Multiple bands were not observed in pure culture amplicons produced with the V6-V8 primer pair, but pure culture V3 DGGE profiles of E. coli, S. maltophilia and B. cepacia contained 5, 3 and 3 bands, respectively. These results demonstrate DGGE was suitable for identification of all important community members in the three-membered artificial consortium, but not for identification of the dominant organisms in this small community. Multiple DGGE bands obtained for single organisms with the V3 primer pair could greatly confound interpretation of DGGE profiles. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be "inherited" from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goals of this study were (1) to investigate whether Fucus vesiculosus regulates the production of its antifouling defence chemicals against microfoulers in response to light limitation and temperature shifts and (2) to investigate if different surface concentrations of defence compounds shape epibacterial communities. F. vesiculosus was incubated in indoor mesocosms at five different temperature conditions (5 to 25°C) and in outdoor mesocosms under six differently reduced sunlight conditions (0 to 100%), respectively. Algal surface concentrations of previously identified antifouling compounds - dimethylsulphopropionate (DMSP), fucoxanthin and proline - were determined and the bacterial community composition was characterized by in-depth sequencing of the 16S-rRNA gene. Altogether, the effect of different treatment levels upon defence compound concentrations was limited. Under all conditions DMSP alone appeared to be sufficiently concentrated to warrant for at least a partial inhibitory action against epibiotic bacteria of F. vesiculosus. In contrast, proline and fucoxanthin rarely reached the necessary concentration ranges for self-contained inhibition. Nonetheless, in both experiments along with the direct influence of temperature and light, all three compounds apparently affected (and thereby shaped) the overall bacterial community composition associated with F. vesiculosus since tendencies for insensitivity towards all three compounds were observed among bacterial taxa that typically dominate those communities. Given that the concentrations of at least one of the compounds (in most cases DMSP) were always high enough to inhibit bacterial settlement, we conclude that the capacity of F. vesiculosus for such defence will hardly be compromised by shading or warming to temperatures up to 25°C.