996 resultados para B translocation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation of the transcription factor nuclear factor kappa B (NF-κB) is controlled by proteolysis of its inhibitory subunit (IκB) via the ubiquitin-proteasome pathway. Signal-induced phosphorylation of IκBα by a large multisubunit complex containing IκB kinases is a prerequisite for ubiquitination. Here, we show that FWD1 (a mouse homologue of Slimb/βTrCP), a member of the F-box/WD40-repeat proteins, is associated specifically with IκBα only when IκBα is phosphorylated. The introduction of FWD1 into cells significantly promotes ubiquitination and degradation of IκBα in concert with IκB kinases, resulting in nuclear translocation of NF-κB. In addition, FWD1 strikingly evoked the ubiquitination of IκBα in the in vitro system. In contrast, a dominant-negative form of FWD1 inhibits the ubiquitination, leading to stabilization of IκBα. These results suggest that the substrate-specific degradation of IκBα is mediated by a Skp1/Cull 1/F-box protein (SCF) FWD1 ubiquitin-ligase complex and that FWD1 serves as an intracellular receptor for phosphorylated IκBα. Skp1/Cullin/F-box protein FWD1 might play a critical role in transcriptional regulation of NF-κB through control of IκB protein stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the mechanisms by which two different types of photonic radiation, short wavelength UV (UV-C) and γ radiation, activate transcription factor NF-κB. Exposure of mammalian cells to either form of radiation resulted in induction with similar kinetics of NF-κB DNA binding activity, nuclear translocation of its p65(RelA) subunit, and degradation of the major NF-κB inhibitor IκBα. In both cases, induction of NF-κB activity was attenuated by proteasome inhibitors and a mutation in ubiquitin-activating enzyme, suggesting that both UV-C and γ radiation induce degradation of IκBs by means of the ubiquitin/proteasome pathway. However, although the induction of IκBα degradation by γ rays was dependent on its phosphorylation at Ser-32 and Ser-36, UV-C-induced IκBα degradation was not dependent on phosphorylation of these residues. Even the “super repressor” IκBα mutant, which contains alanines at positions 32 and 36, was still susceptible to UV-C-induced degradation. Correspondingly, we found that γ radiation led to activation of IKK, the protein kinase that phosphorylates IκBα at Ser-32 and Ser-36, whereas UV-C radiation did not. Furthermore, expression of a catalytically inactive IKKβ mutant prevented NF-κB activation by γ radiation, but not by UV-C. These results indicate that γ radiation and UV-C activate NF-κB through two distinct mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Targeting of gene regulatory factors to specific intranuclear sites may be critical for the accurate control of gene expression. The acute myelogenous leukemia 8;21 (AML1/ETO) fusion protein is encoded by a rearranged gene created by the ETO chromosomal translocation. This protein lacks the nuclear matrix-targeting signal that directs the AML1 protein to appropriate gene regulatory sites within the nucleus. Here we report that substitution of the chromosome 8-derived ETO protein for the multifunctional C terminus of AML1 precludes targeting of the factor to AML1 subnuclear domains. Instead, the AML1/ETO fusion protein is redirected by the ETO component to alternate nuclear matrix-associated foci. Our results link the ETO chromosomal translocation in AML with modifications in the intranuclear trafficking of the key hematopoietic regulatory factor, AML1. We conclude that misrouting of gene regulatory factors as a consequence of chromosomal translocations is an important characteristic of acute leukemias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HOX11, a divergent homeodomain-containing transcription factor, was isolated from the breakpoint of the nonrandom t(10;14)(q24;q11) chromosome translocation found in human T cell acute lymphoblastic leukemias. The translocation places the HOX11 coding sequence under the transcriptional control of TCR α/δ regulatory elements, resulting in ectopic expression of a normal HOX11 protein in thymocytes. To investigate the oncogenic potential of HOX11, we targeted its expression in lymphocytes of transgenic mice by placing the human cellular DNA under the transcriptional control of Ig heavy chain or LCK regulatory sequences. Only IgHμ-HOX11 mice expressing low levels of HOX11 were viable. During their second year of life, all HOX11 transgenic mice became terminally ill with more than 75% developing large cell lymphomas in the spleen, which frequently disseminated to thymus, lymph nodes, and other nonhematopoietic tissues. Lymphoma cells were predominantly clonal IgM+IgD+ mature B cells. Repopulation of severe combined immunodeficient mice with cells from hyperplastic spleens indicated that the HOX11 tumor phenotype was transplantable. Before tumor development, expression of the transgene did not result in perturbations in lymphopoiesis; however, lymphoid hyperplasia involving the splenic marginal zones was present in 20% of spleens. Our studies provide direct evidence that expression of HOX11 in lymphocytes leads to malignant transformation. These mice are a useful model system to study mechanisms involved in transformation from B-lineage hyperplasia to malignant lymphoma and for testing novel approaches to therapy. They represent a novel animal model for non-Hodgkin’s lymphoma of peripheral mature B cell origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infection of cattle with the protozoan Theileria parva results in uncontrolled T lymphocyte proliferation resulting in lesions resembling multicentric lymphoma. Parasitized cells exhibit autocrine growth characterized by persistent translocation of the transcriptional regulatory factor nuclear factor κB (NFκB) to the nucleus and consequent enhanced expression of interleukin 2 and the interleukin 2 receptor. How T. parva induces persistent NFκB activation, required for T cell activation and proliferation, is unknown. We hypothesized that the parasite induces degradation of the IκB molecules which normally sequester NFκB in the cytoplasm and that continuous degradation requires viable parasites. Using T. parva-infected T cells, we showed that the parasite mediates continuous phosphorylation and proteolysis of IκBα. However, IκBα reaccumulated to high levels in parasitized cells, which indicated that T. parva did not alter the normal NFκB-mediated positive feedback loop which restores cytoplasmic IκBα. In contrast, T. parva mediated continuous degradation of IκBβ resulting in persistently low cytoplasmic IκBβ levels. Normal IκBβ levels were only restored following T. parva killing, indicating that viable parasites are required for IκBβ degradation. Treatment of T. parva-infected cells with pyrrolidine dithiocarbamate, a metal chelator, blocked both IκB degradation and consequent enhanced expression of NFκB dependent genes. However treatment using the antioxidant N-acetylcysteine had no effect on either IκB levels or NFκB activation, indicating that the parasite subverts the normal IκB regulatory pathway downstream of the requirement for reactive oxygen intermediates. Identification of the critical points regulated by T. parva may provide new approaches for disease control as well as increase our understanding of normal T cell function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yersiniae, causative agents of plague and gastrointestinal diseases, secrete and translocate Yop effector proteins into the cytosol of macrophages, leading to disruption of host defense mechanisms. It is shown in this report that Yersinia enterocolitica induces apoptosis in macrophages and that this effect depends on YopP. Functional secretion and translocation mechanisms are required for YopP to act, strongly suggesting that this protein exerts its effect intracellularly, after translocation into the macrophages. YopP shows a high level of sequence similarity with AvrRxv, an avirulence protein from Xanthomonas campestris, a plant pathogen that induces programmed cell death in plant cells. This indicates possible similarities between the strategies used by pathogenic bacteria to elicit programmed cell death in both plant and animal hosts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although vertebrate cytoplasmic dynein can move to the minus ends of microtubules in vitro, its ability to translocate purified vesicles on microtubules depends on the presence of an accessory complex known as dynactin. We have cloned and characterized a novel gene, NIP100, which encodes the yeast homologue of the vertebrate dynactin complex protein p150glued. Like strains lacking the cytoplasmic dynein heavy chain Dyn1p or the centractin homologue Act5p, nip100Δ strains are viable but undergo a significant number of failed mitoses in which the mitotic spindle does not properly partition into the daughter cell. Analysis of spindle dynamics by time-lapse digital microscopy indicates that the precise role of Nip100p during anaphase is to promote the translocation of the partially elongated mitotic spindle through the bud neck. Consistent with the presence of a true dynactin complex in yeast, Nip100p exists in a stable complex with Act5p as well as Jnm1p, another protein required for proper spindle partitioning during anaphase. Moreover, genetic depletion experiments indicate that the binding of Nip100p to Act5p is dependent on the presence of Jnm1p. Finally, we find that a fusion of Nip100p to the green fluorescent protein localizes to the spindle poles throughout the cell cycle. Taken together, these results suggest that the yeast dynactin complex and cytoplasmic dynein together define a physiological pathway that is responsible for spindle translocation late in anaphase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The posttranslational translocation of proteins across the endoplasmic reticulum (ER) membrane in yeast requires ATP hydrolysis and the action of hsc70s (DnaK homologues) and DnaJ homologues in both the cytosol and ER lumen. Although the cytosolic hsc70 (Ssa1p) and the ER lumenal hsc70 (BiP) are homologous, they cannot substitute for one another, possibly because they interact with specific DnaJ homologues on each side of the ER membrane. To investigate this possibility, we purified Ssa1p, BiP, Ydj1p (a cytosolic DnaJ homologue), and a GST–63Jp fusion protein containing the lumenal DnaJ region of Sec63p. We observed that BiP, but not Ssa1p, is able to associate with GST–63Jp and that Ydj1p stimulates the ATPase activity of Ssa1p up to 10-fold but increases the ATPase activity of BiP by <2-fold. In addition, Ydj1p and ATP trigger the release of an unfolded polypeptide from Ssa1p but not from BiP. To understand further how BiP drives protein translocation, we purified four dominant lethal mutants of BiP. We discovered that each mutant is defective for ATP hydrolysis, fails to undergo an ATP-dependent conformational change, and cannot interact with GST–63Jp. Measurements of protein translocation into reconstituted proteoliposomes indicate that the mutants inhibit translocation even in the presence of wild-type BiP. We conclude that a conformation- and ATP-dependent interaction of BiP with the J domain of Sec63p is essential for protein translocation and that the specificity of hsc70 action is dictated by their DnaJ partners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rearrangement of chromosomal bands 1q21–23 is one of the most frequent chromosomal aberrations observed in hematological malignancy. The genes affected by these rearrangements remain poorly characterized. Typically, 1q21–23 rearrangements arise during tumor evolution and accompany disease-specific chromosomal rearrangements such as t(14;18) (BCL2) and t(8;14) (MYC), where they are thus thought to play an important role in tumor progression. The pathogenetic basis of this 1q21–23-associated disease progression is currently unknown. In this setting, we surveyed our series of follicular lymphoma for evidence of recurring 1q21–23 breaks and identified three cases in which a t(14;18)(q32;q21) was accompanied by a novel balanced t(1;22)(q22;q11). Molecular cloning of the t(1;22) in a cell line (B593) derived from one of these cases and detailed fluorescent in situ hybridization mapping in the two remaining cases identified the FCGR2B gene, which encodes the immunoreceptor tyrosine-based inhibition motif-bearing IgG Fc receptor, FcγRIIB, as the target gene of the t(1;22)(q22;q11). We demonstrate deregulation of FCGR2B leading to hyperexpression of FcγRIIb2 as the principal consequence of the t(1;22). This is evidence that IgG Fc receptors can be targets for deregulation through chromosomal translocation in lymphoma. It suggests that dysregulation of FCGR2B may play a role in tumor progression in follicular lymphoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal transducer and activator of transcription (Stat) proteins are latent transcription factors that reside in the cytoplasm before activation. On cytokine-induced tyrosine phosphorylation, these molecules dimerize and accumulate transiently in the nucleus. No specific signals mediating these processes have been identified to date. In this report, we examine the nuclear export of Stat1. We find that treatment of cells with the export inhibitor leptomycin B does not affect steady-state localization of Stat1 but impedes nuclear export after IFNγ-induced nuclear accumulation. We identify a conserved leucine-rich helical segment in the coiled-coil domain of Stat1, which is responsible for the efficient nuclear export of this protein. Mutation of two hallmark leucines within this segment greatly attenuate the back transport of Stat1 in the cytoplasm. When fused to a carrier protein, the Stat1 export sequence can mediate nuclear export after intranuclear microinjection. We show that prolonging the nuclear presence of Stat1 by inhibiting nuclear export reduces the transcriptional response to stimulation with IFNγ. These data suggest that Stats are actively exported from the nucleus via several separate pathways and link this activity to transcriptional activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neural cell adhesion molecule (N-CAM) is expressed on the surface of astrocytes, where its homophilic binding leads to the activation of the transcription factor NF-κB. Transfection of astrocytes with a construct encompassing the transmembrane region and the cytoplasmic domain of N-CAM (designated Tm-Cyto, amino acids 685–839 in the full-length molecule) inhibited this activation up to 40%, and inhibited N-CAM-induced translocation of NF-κB to the nucleus. N-CAM also activated NF-κB in astrocytes from N-CAM knockout mice, presumably through binding to a heterophile. This activation, however, was not blocked by Tm-Cyto expression, indicating that the inhibitory effect of the Tm-Cyto construct is specific for cell surface N-CAM. Deletions and point mutations of the cytoplasmic portion of the Tm-Cyto construct indicated that the region between amino acids 780 and 800 were essential for inhibitory activity. This region contains four threonines (788, 793, 794, and 797). Mutation to alanine of T788, T794, or T797, but not T793, abolished inhibitory activity, as did mutation of T788 or T797 to aspartic acid. A Tm-Cyto construct with T794 mutated to aspartic acid retained inhibitory activity but did not itself induce a constitutive NF-κB response. This result suggests that phosphorylation of T794 may be necessary but is not the triggering event. Overall, these findings define a short segment of the N-CAM cytoplasmic domain that is critical for N-CAM-induced activation of NF-κB and may be important in other N-CAM-mediated signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcription factor NF-κB regulates expression of genes that are involved in inflammation, immune response, viral infection, cell survival, and division. However, the role of NF-κB in hypertrophic growth of terminally differentiated cardiomyocytes is unknown. Here we report that NF-κB activation is required for hypertrophic growth of cardiomyocytes. In cultured rat primary neonatal ventricular cardiomyocytes, the nuclear translocation of NF-κB and its transcriptional activity were stimulated by several hypertrophic agonists, including phenylephrine, endothelin-1, and angiotensin II. The activation of NF-κB was inhibited by expression of a “supersuppressor” IκBα mutant that is resistant to stimulation-induced degradation and a dominant negative IκB kinase (IKKβ) mutant that can no longer be activated by phosphorylation. Furthermore, treatment with phenylephrine induced IκBα degradation in an IKK-dependent manner, suggesting that NF-κB is a downstream target of the hypertrophic agonists. Importantly, expression of the supersuppressor IκBα mutant or the dominant negative IKKβ mutant blocked the hypertrophic agonist-induced expression of the embryonic gene atrial natriuretic factor and enlargement of cardiomyocytes. Conversely, overexpression of NF-κB itself induced atrial natriuretic factor expression and cardiomyocyte enlargement. These findings suggest that NF-κB plays a critical role in the hypertrophic growth of cardiomyocytes and may serve as a potential target for the intervention of heart disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caffeic acid phenethyl ester (CAPE), an active component of propolis from honeybee hives, is known to have antimitogenic, anticarcinogenic, antiinflammatory, and immunomodulatory properties. The molecular basis for these diverse properties is not known. Since the role of the nuclear factor NF-kappa B in these responses has been documented, we examined the effect of CAPE on this transcription factor. Our results show that the activation of NF-kappa B by tumor necrosis factor (TNF) is completely blocked by CAPE in a dose- and time-dependent manner. Besides TNF, CAPE also inhibited NF-kappa B activation induced by other inflammatory agents including phorbol ester, ceramide, hydrogen peroxide, and okadaic acid. Since the reducing agents reversed the inhibitory effect of CAPE, it suggests the role of critical sulfhydryl groups in NF-kappa B activation. CAPE prevented the translocation of the p65 subunit of NF-kappa B to the nucleus and had no significant effect on TNF-induced I kappa B alpha degradation, but did delay I kappa B alpha resynthesis. The effect of CAPE on inhibition of NF-kappa B binding to the DNA was specific, in as much as binding of other transcription factors including AP-1, Oct-1, and TFIID to their DNA were not affected. When various synthetic structural analogues of CAPE were examined, it was found that a bicyclic, rotationally constrained, 5,6-dihydroxy form was superactive, whereas 6,7-dihydroxy variant was least active. Thus, overall our results demonstrate that CAPE is a potent and a specific inhibitor of NF-kappa B activation and this may provide the molecular basis for its multiple immunomodulatory and antiinflammatory activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously, we reported that a 61-bp subgenomic HBV DNA sequence (designated as 15AB, nt 1855-1915) is a hot spot for genomic recombination and that a cellular protein binding to 15AB may be the putative recombinogenic protein. In the present study, we established the existence of a 15AB-like sequence in human and rat chromosomal DNA by Southern blot analysis. The 15AB-like sequence isolated from the rat chromosome demonstrated a 80.9% identity with 5'-CCAAGCTGTGCCTTGGGTGGC-3', at 1872-1892 of the hepatitis B virus genome, thought to be the essential region for recombination. Interestingly, this 15AB-like sequence also contained the pentanucleotide motifs GCTGG and CCAGC as an inverted repeat, part of the chi known hot spot for recombination in Escherichia coli. Importantly, a portion of the 15AB-like sequence is homologous (82.1%, 23/28 bp) to break point clusters of the human promyelocytic leukemia (PML) gene, characterized by a translocation [t(15;17)], and to rearranged mouse DNA for the immunoglobulin kappa light chain. Moreover, 15AB and 15AB-like sequences have striking homologies (12/15 = 80.0% and 13/15 = 86.7%, respectively) to the consensus sequence for topoisomerase II. Our present results suggest that this 15AB-like sequence in the rat genome might be a recombinogenic candidate triggering genomic instability in carcinogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The SecY protein of Escherichia coli is an integral membrane component of the protein export apparatus. Suppressor mutations in the secY gene (prlA alleles) have been isolated that restore the secretion of precursor proteins with defective signal sequences. These mutations have never been shown to affect the translocation of wild-type precursor proteins. Here, we report that prlA suppressor mutations relieve the proton-motive force (pmf) dependency of the translocation of wild-type precursors, both in vivo and in vitro. Furthermore, the proton-motive force dependency of the translocation of a precursor with a stably folded domain in the mature region was suppressed by prlA mutations in vitro. These data show that prlA mutations cause a general relaxation of the export apparatus rather than a specific change that results in bypassing of the recognition of the signal sequence. In addition, these results are indicative for a mechanism in which the proton-motive force stimulates translocation by altering the conformation of the translocon.