969 resultados para Autonomous Vehicle Path Planning


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main purpose of this study was to examine the applicability of geostatistical modeling to obtain valuable information for assessing the environmental impact of sewage outfall discharges. The data set used was obtained in a monitoring campaign to S. Jacinto outfall, located off the Portuguese west coast near Aveiro region, using an AUV. The Matheron’s classical estimator was used the compute the experimental semivariogram which was fitted to three theoretical models: spherical, exponential and gaussian. The cross-validation procedure suggested the best semivariogram model and ordinary kriging was used to obtain the predictions of salinity at unknown locations. The generated map shows clearly the plume dispersion in the studied area, indicating that the effluent does not reach the near by beaches. Our study suggests that an optimal design for the AUV sampling trajectory from a geostatistical prediction point of view, can help to compute more precise predictions and hence to quantify more accurately dilution. Moreover, since accurate measurements of plume’s dilution are rare, these studies might be very helpful in the future for validation of dispersion models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Geostatistics has been successfully used to analyze and characterize the spatial variability of environmental properties. Besides giving estimated values at unsampled locations, it provides a measure of the accuracy of the estimate, which is a significant advantage over traditional methods used to assess pollution. In this work universal block kriging is novelty used to model and map the spatial distribution of salinity measurements gathered by an Autonomous Underwater Vehicle in a sea outfall monitoring campaign, with the aim of distinguishing the effluent plume from the receiving waters, characterizing its spatial variability in the vicinity of the discharge and estimating dilution. The results demonstrate that geostatistical methodology can provide good estimates of the dispersion of effluents that are very valuable in assessing the environmental impact and managing sea outfalls. Moreover, since accurate measurements of the plume’s dilution are rare, these studies might be very helpful in the future to validate dispersion models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis aims at addressing the development of autonomous behaviors, for search and exploration with a mini-UAV (Unmanned Aerial Vehicle), or also called MAV (Mini Aerial Vehicle) prototype, in order to gather information in rescue scenarios. The platform used in this work is a four rotor helicopter, known as quad-rotor from the German company Ascending Technologies GmbH, which is later assembled with a on-board processing unit (i.e. a tiny light weight computer) and a on-board sensor suite (i.e. 2D-LIDAR and Ultrasonic Sonar). This work can be divided into two phases. In the first phase an Indoor Position Tracking system was settled in order to obtain the Cartesian coordinates (i.e. X, Y, Z) and orientation (i.e.heading) which provides the relative position and orientation of the platform. The second phase was the design and implementation of medium/high level controllers on each command input in order to autonomously control the aircraft position, which is the first step towards an autonomous hovering flight, and any autonomous behavior (e.g. Landing, Object avoidance, Follow the wall). The main work is carried out in the Laboratory ”Intelligent Systems for Emergencies and Civil Defense”, in collaboration with ”Dipartimento di Informatica e Sistemistica” of Sapienza Univ. of Rome and ”Istituto Superiore Antincendi” of the Italian Firemen Department.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of unmanned marine robotic vehicles in bathymetric surveys is discussed. This paper presents recent results in autonomous bathymetric missions with the ROAZ autonomous surface vehicle. In particular, robotic surface vehicles such as ROAZ provide an efficient tool in risk assessment for shallow water environments and water land interface zones as the near surf zone in marine coast. ROAZ is an ocean capable catamaran for distinct oceanographic missions, and with the goal to fill the gap were other hydrographic surveys vehicles/systems are not compiled to operate, like very shallow water rivers and marine coastline surf zones. Therefore, the use of robotic systems for risk assessment is validated through several missions performed either in river scenario (in a very shallow water conditions) and in marine coastlines.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

International Lifesaving Congress 2007, La Coruna, Spain, December, 2007

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work a forest fire detection solution using small autonomous aerial vehicles is proposed. The FALCOS unmanned aerial vehicle developed for remote-monitoring purposes is described. This is a small size UAV with onboard vision processing and autonomous flight capabilities. A set of custom developed navigation sensors was developed for the vehicle. Fire detection is performed through the use of low cost digital cameras and near-infrared sensors. Test results for navigation and ignition detection in real scenario are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The design of an Autonomous Surface Vehicle for operation in river and estuarine scenarios is presented. Multiple operations with autonomous underwater vehicles and support to AUV missions are one of the main design goals in the ROAZ system. The mechanical design issues are discussed. Hardware, software and implementation status are described along with the control and navigation system architecture. Some preliminary test results concerning a custom developed thruster are presented along with hydrodynamic drag calculations by the use of computer fluid dynamic methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The design and development of the swordfish autonomous surface vehicle (ASV) system is discussed. Swordfish is an ocean capable 4.5 m long catamaran designed for network centric operations (with ocean and air going vehicles and human operators). In the basic configuration, Swordfish is both a survey vehicle and a communications node with gateways for broadband, Wi-Fi and GSM transports and underwater acoustic modems. In another configuration, Swordfish mounts a docking station for the autonomous underwater vehicle Isurus from Porto University. Swordfish has an advanced control architecture for multi-vehicle operations with mixed initiative interactions (human operators are allowed to interact with the control loops).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents a hybrid coordinated manoeuvre for docking an autonomous surface vehicle with an autonomous underwater vehicle. The control manoeuvre uses visual information to estimate the AUV relative position and attitude in relation to the ASV and steers the ASV in order to dock with the AUV. The AUV is assumed to be at surface with only a small fraction of its volume visible. The system implemented in the autonomous surface vehicle ROAZ, developed by LSA-ISEP to perform missions in river environment, test autonomous AUV docking capabilities and multiple AUV/ASV coordinated missions is presented. Information from a low cost embedded robotics vision system (LSAVision), along with inertial navigation sensors is fused in an extended Kalman filter and used to determine AUV relative position and orientation to the surface vehicle The real time vision processing system is described and results are presented in operational scenario.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

IEEE Robótica 2007 - 7th Conference on Mobile Robots and Competitions, Paderne, Portugal 2007

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of robotic vehicles for environmental modeling is discussed. This paper presents diverse results in autonomous marine missions with the ROAZ autonomous surface vehicle. The vehicle can perform autonomous missions while gathering marine data with high inertial and positioning precision. The underwater world is an, economical and environmental, asset that need new tools to study and preserve it. ROAZ is used in marine environment missions since it can sense and monitor the surface and underwater scenarios. Is equipped with a diverse set of sensors, cameras and underwater sonars that generate 3D environmental models. It is used for study the marine life and possible underwater wrecks that can pollute or be a danger to marine navigation. The 3D model and integration of multibeam and sidescan sonars represent a challenge in nowadays. Adding that it is important that robots can explore an area and make decisions based on their surroundings and goals. Regard that, autonomous robotic systems can relieve human beings of repetitive and dangerous tasks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the design of low cost, small autonomous surface vehicle for missions in the coastal waters and specifically for the challenging surf zone. The main objective of the vehicle design described in this paper is to address both the capability of operation at sea in relative challenging conditions and maintain a very low set of operational requirements (ease of deployment). This vehicle provides a first step towards being able to perform general purpose missions (such as data gathering or patrolling) and to at least in a relatively short distances to be able to be used in rescue operations (with very low handling requirements) such as carrying support to humans on the water. The USV is based on a commercially available fiber glass hull, it uses a directional waterjet powered by an electrical brushless motor for propulsion, thus without any protruding propeller reducing danger in rescue operations. Its small dimensions (1.5 m length) and weight allow versatility and ease of deployment. The vehicle design is described in this paper both from a hardware and software point of view. A characterization of the vehicle in terms of energy consumption and performance is provided both from test tank and operational scenario tests. An example application in search and rescue is also presented and discussed with the integration of this vehicle in the European ICARUS (7th framework) research project addressing the development and integration of robotic tools for large scale search and rescue operations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Autonomous vehicles are increasingly being used in mission-critical applications, and robust methods are needed for controlling these inherently unreliable and complex systems. This thesis advocates the use of model-based programming, which allows mission designers to program autonomous missions at the level of a coach or wing commander. To support such a system, this thesis presents the Spock generative planner. To generate plans, Spock must be able to piece together vehicle commands and team tactics that have a complex behavior represented by concurrent processes. This is in contrast to traditional planners, whose operators represent simple atomic or durative actions. Spock represents operators using the RMPL language, which describes behaviors using parallel and sequential compositions of state and activity episodes. RMPL is useful for controlling mobile autonomous missions because it allows mission designers to quickly encode expressive activity models using object-oriented design methods and an intuitive set of activity combinators. Spock also is significant in that it uniformly represents operators and plan-space processes in terms of Temporal Plan Networks, which support temporal flexibility for robust plan execution. Finally, Spock is implemented as a forward progression optimal planner that walks monotonically forward through plan processes, closing any open conditions and resolving any conflicts. This thesis describes the Spock algorithm in detail, along with example problems and test results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task