947 resultados para Auditory-visual teaching


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect produced by a warning stimulus(i) (WS) in reaction time (RT) tasks is commonly attributed to a facilitation of sensorimotor mechanisms by alertness. Recently, evidence was presented that this effect is also related to a proactive inhibition of motor control mechanisms. This inhibition would hinder responding to the WS instead of the target stimulus (TS). Some studies have shown that auditory WS produce a stronger facilitatory effect than visual WS. The present study investigated whether the former WS also produces a stronger inhibitory effect than the latter WS. In one session, the RTs to a visual target in two groups of volunteers were evaluated. In a second session, subjects reacted to the visual target both with (50% of the trials) and without (50% of the trials) a WS. During trials, when subjects received a WS, one group received a visual WS and the other group was presented with an auditory WS. In the first session, the mean RTs of the two groups did not differ significantly. In the second session, the mean RT of the two groups in the presence of the WS was shorter than in their absence. The mean RT in the absence of the auditory WS was significantly longer than the mean RT in the absence of the visual WS. Mean RTs did not differ significantly between the present conditions of the visual and auditory WS. The longer RTs of the auditory WS group as opposed to the visual WS group in the WS-absent trials suggest that auditory WS exert a stronger inhibitory influence on responsivity than visual WS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this functional magnetic resonance imaging (fMRI) study was to identify human brain areas that are sensitive to the direction of auditory motion. Such directional sensitivity was assessed in a hypothesis-free manner by analyzing fMRI response patterns across the entire brain volume using a spherical-searchlight approach. In addition, we assessed directional sensitivity in three predefined brain areas that have been associated with auditory motion perception in previous neuroimaging studies. These were the primary auditory cortex, the planum temporale and the visual motion complex (hMT/V5+). Our whole-brain analysis revealed that the direction of sound-source movement could be decoded from fMRI response patterns in the right auditory cortex and in a high-level visual area located in the right lateral occipital cortex. Our region-of-interest-based analysis showed that the decoding of the direction of auditory motion was most reliable with activation patterns of the left and right planum temporale. Auditory motion direction could not be decoded from activation patterns in hMT/V5+. These findings provide further evidence for the planum temporale playing a central role in supporting auditory motion perception. In addition, our findings suggest a cross-modal transfer of directional information to high-level visual cortex in healthy humans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Edges are crucial for the formation of coherent objects from sequential sensory inputs within a single modality. Moreover, temporally coincident boundaries of perceptual objects across different sensory modalities facilitate crossmodal integration. Here, we used functional magnetic resonance imaging in order to examine the neural basis of temporal edge detection across modalities. Onsets of sensory inputs are not only related to the detection of an edge but also to the processing of novel sensory inputs. Thus, we used transitions from input to rest (offsets) as convenient stimuli for studying the neural underpinnings of visual and acoustic edge detection per se. We found, besides modality-specific patterns, shared visual and auditory offset-related activity in the superior temporal sulcus and insula of the right hemisphere. Our data suggest that right hemispheric regions known to be involved in multisensory processing are crucial for detection of edges in the temporal domain across both visual and auditory modalities. This operation is likely to facilitate cross-modal object feature binding based on temporal coincidence. Hum Brain Mapp, 2008. (c) 2008 Wiley-Liss, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article, it is shown that IWD incorporates topological perceptual characteristics of both spoken and written language, and it is argued that these characteristics should not be ignored or given up when synchronous textual CMC is technologically developed and upgraded.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study was designed to elucidate sex-related differences in two basic auditory and one basic visual aspect of sensory functioning, namely sensory discrimination of pitch, loudness, and brightness. Although these three aspects of sensory functioning are of vital importance in everyday life, little is known about whether men and women differ from each other in these sensory functions. Participants were 100 male and 100 female volunteers ranging in age from 18 to 30 years. Since sensory sensitivity may be positively related to individual levels of intelligence and musical experience, measures of psychometric intelligence and musical background were also obtained. Reliably better performance for men compared to women was found for pitch and loudness, but not for brightness discrimination. Furthermore, performance on loudness discrimination was positively related to psychometric intelligence, while pitch discrimination was positively related to both psychometric intelligence and levels of musical training. Additional regression analyses revealed that each of three predictor variables (sex, psychometric intelligence, and musical training) accounted for a statistically significant portion of unique variance in pitch discrimination. With regard to loudness discrimination, regression analysis yielded a statistically significant portion of unique variance for sex as a predictor variable, whereas psychometric intelligence just failed to reach statistical significance. The potential influence of sex hormones on sex-related differences in sensory functions is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study investigated the relationship between psychometric intelligence and temporal resolution power (TRP) as simultaneously assessed by auditory and visual psychophysical timing tasks. In addition, three different theoretical models of the functional relationship between TRP and psychometric intelligence as assessed by means of the Adaptive Matrices Test (AMT) were developed. To test the validity of these models, structural equation modeling was applied. Empirical data supported a hierarchical model that assumed auditory and visual modality-specific temporal processing at a first level and amodal temporal processing at a second level. This second-order latent variable was substantially correlated with psychometric intelligence. Therefore, the relationship between psychometric intelligence and psychophysical timing performance can be explained best by a hierarchical model of temporal information processing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A common finding in time psychophysics is that temporal acuity is much better for auditory than for visual stimuli. The present study aimed to examine modality-specific differences in duration discrimination within the conceptual framework of the Distinct Timing Hypothesis. This theoretical account proposes that durations in the lower milliseconds range are processed automatically while longer durations are processed by a cognitive mechanism. A sample of 46 participants performed two auditory and visual duration discrimination tasks with extremely brief (50-ms standard duration) and longer (1000-ms standard duration) intervals. Better discrimination performance for auditory compared to visual intervals could be established for extremely brief and longer intervals. However, when performance on duration discrimination of longer intervals in the 1-s range was controlled for modality-specific input from the sensory-automatic timing mechanism, the visual-auditory difference disappeared completely as indicated by virtually identical Weber fractions for both sensory modalities. These findings support the idea of a sensory-automatic mechanism underlying the observed visual-auditory differences in duration discrimination of extremely brief intervals in the millisecond range and longer intervals in the 1-s range. Our data are consistent with the notion of a gradual transition from a purely modality-specific, sensory-automatic to a more cognitive, amodal timing mechanism. Within this transition zone, both mechanisms appear to operate simultaneously but the influence of the sensory-automatic timing mechanism is expected to continuously decrease with increasing interval duration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cover included in paging.