882 resultados para Audio visual speech recognition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are addressing a new problem of improving automatic speech recognition performance, given multiple utterances of patterns from the same class. We have formulated the problem of jointly decoding K multiple patterns given a single Hidden Markov Model. It is shown that such a solution is possible by aligning the K patterns using the proposed Multi Pattern Dynamic Time Warping algorithm followed by the Constrained Multi Pattern Viterbi Algorithm The new formulation is tested in the context of speaker independent isolated word recognition for both clean and noisy patterns. When 10 percent of speech is affected by a burst noise at -5 dB Signal to Noise Ratio (local), it is shown that joint decoding using only two noisy patterns reduces the noisy speech recognition error rate to about 51 percent, when compared to the single pattern decoding using the Viterbi Algorithm. In contrast a simple maximization of individual pattern likelihoods, provides only about 7 percent reduction in error rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, many of the world’s leading media producers, screenwriters, technicians and investors, particularly those in the Asia-Pacific region, have been drawn to work in the People's Republic of China (hereafter China or Mainland China). Media projects with a lighter commercial entertainment feel – compared with the heavy propaganda-oriented content of the past – have multiplied, thanks to the Chinese state’s newfound willingness to consider collaboration with foreign partners. This is no more evident than in film. Despite their long-standing reputation for rigorous censorship, state policymakers are now encouraging Chinese media entrepreneurs to generate fresh ideas and to develop products that will revitalise the stagnant domestic production sector. It is hoped that an increase in both the quality and quantity of domestic feature films, stimulated by an infusion of creativity and cutting-edge technology from outside the country, will help reverse China’s ‘cultural trade deficit’ (wenhua maoyi chizi) (Keane 2007).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective feature extraction for robust speech recognition is a widely addressed topic and currently there is much effort to invoke non-stationary signal models instead of quasi-stationary signal models leading to standard features such as LPC or MFCC. Joint amplitude modulation and frequency modulation (AM-FM) is a classical non-parametric approach to non-stationary signal modeling and recently new feature sets for automatic speech recognition (ASR) have been derived based on a multi-band AM-FM representation of the signal. We consider several of these representations and compare their performances for robust speech recognition in noise, using the AURORA-2 database. We show that FEPSTRUM representation proposed is more effective than others. We also propose an improvement to FEPSTRUM based on the Teager energy operator (TEO) and show that it can selectively outperform even FEPSTRUM

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic modeling using mixtures of multivariate Gaussians is the prevalent approach for many speech processing problems. Computing likelihoods against a large set of Gaussians is required as a part of many speech processing systems and it is the computationally dominant phase for Large Vocabulary Continuous Speech Recognition (LVCSR) systems. We express the likelihood computation as a multiplication of matrices representing augmented feature vectors and Gaussian parameters. The computational gain of this approach over traditional methods is by exploiting the structure of these matrices and efficient implementation of their multiplication. In particular, we explore direct low-rank approximation of the Gaussian parameter matrix and indirect derivation of low-rank factors of the Gaussian parameter matrix by optimum approximation of the likelihood matrix. We show that both the methods lead to similar speedups but the latter leads to far lesser impact on the recognition accuracy. Experiments on 1,138 work vocabulary RM1 task and 6,224 word vocabulary TIMIT task using Sphinx 3.7 system show that, for a typical case the matrix multiplication based approach leads to overall speedup of 46 % on RM1 task and 115 % for TIMIT task. Our low-rank approximation methods provide a way for trading off recognition accuracy for a further increase in computational performance extending overall speedups up to 61 % for RM1 and 119 % for TIMIT for an increase of word error rate (WER) from 3.2 to 3.5 % for RM1 and for no increase in WER for TIMIT. We also express pairwise Euclidean distance computation phase in Dynamic Time Warping (DTW) in terms of matrix multiplication leading to saving of approximately of computational operations. In our experiments using efficient implementation of matrix multiplication, this leads to a speedup of 5.6 in computing the pairwise Euclidean distances and overall speedup up to 3.25 for DTW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop noise robust features using Gammatone wavelets derived from the popular Gammatone functions. These wavelets incorporate the characteristics of human peripheral auditory systems, in particular the spatially-varying frequency response of the basilar membrane. We refer to the new features as Gammatone Wavelet Cepstral Coefficients (GWCC). The procedure involved in extracting GWCC from a speech signal is similar to that of the conventional Mel-Frequency Cepstral Coefficients (MFCC) technique, with the difference being in the type of filterbank used. We replace the conventional mel filterbank in MFCC with a Gammatone wavelet filterbank, which we construct using Gammatone wavelets. We also explore the effect of Gammatone filterbank based features (Gammatone Cepstral Coefficients (GCC)) for robust speech recognition. On AURORA 2 database, a comparison of GWCCs and GCCs with MFCCs shows that Gammatone based features yield a better recognition performance at low SNRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Chinese language is based on characters which are syllabic in nature. Since languages have syllabotactic rules which govern the construction of syllables and their allowed sequences, Chinese character sequence models can be used as a first level approximation of allowed syllable sequences. N-gram character sequence models were trained on 4.3 billion characters. Characters are used as a first level recognition unit with multiple pronunciations per character. For comparison the CU-HTK Mandarin word based system was used to recognize words which were then converted to character sequences. The character only system error rates for one best recognition were slightly worse than word based character recognition. However combining the two systems using log-linear combination gives better results than either system separately. An equally weighted combination gave consistent CER gains of 0.1-0.2% absolute over the word based standard system. Copyright © 2009 ISCA.

Relevância:

100.00% 100.00%

Publicador: