987 resultados para Atp-citrate Lyase
Resumo:
Um dos fatores mais limitantes para a produção de vermicomposto é a disponibilidade de esterco. Neste trabalho, foi avaliado o efeito da substituição parcial do esterco por bagaço de cana e por resíduos de leguminosa (Gliricidia sepium) na vermicompostagem sobre a qualidade do vermicomposto e sobre a bioatividade dos humatos, avaliadas por meio da análise do crescimento radicular e da atividade das bombas de H+ isoladas de raízes de alface. A substituição do esterco por bagaço de cana e por resíduos de leguminosas não acarretou prejuízo às características químicas dos vermicompostos. No entanto, os humatos isolados dos diferentes vermicompostos apresentaram características químicas distintas, tais como: acidez e propriedades óticas distintas. Os humatos produzidos a partir de esterco de bovino e da mistura esterco bovino + bagaço proporcionaram maiores estímulos no crescimento radicular das plantas de alface, sendo os mais indicados para uso na forma solúvel. A inclusão de resíduos de leguminosas no processo de vermicompostagem produziu humatos sem efeito sobre o desenvolvimento das raízes de alface.
Resumo:
Signal transduction modulates expression and activity of cholesterol transporters. We recently demonstrated that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade regulates protein stability of Scavenger Receptor BI (SR-BI) through Proliferator Activator Receptor (PPARα) -dependent degradation pathways. In addition, MAPK (Mek/Erk 1/2) inhibition has been shown to influence liver X receptor (LXR) -inducible ATP Binding Cassette (ABC) transporter ABCA1 expression in macrophages. Here we investigated if Ras/MAPK signaling could alter expression and activity of ABCA1 and ABCG1 in steroidogenic and hepatic cell lines. We demonstrate that in Chinese Hamster Ovary (CHO) cells and human hepatic HuH7 cells, extracellular signal-regulated kinase 1/2 (Erk1/2) inhibition reduces PPARα-inducible ABCA1 protein levels, while ectopic expression of constitutively active H-Ras, K-Ras and MAPK/Erk kinase 1 (Mek1) increases ABCA1 protein expression, respectively. Furthermore, Mek1/2 inhibitors reduce ABCG1 protein levels in ABCG1 overexpressing CHO cells (CHO-ABCG1) and human embryonic kidney 293 (HEK293) cells treated with LXR agonist. This correlates with Mek1/2 inhibition reducing ABCG1 cell surface expression and decreasing cholesterol efflux onto High Density Lipoproteins (HDL). Real Time reverse transcriptase polymerase chain reaction (RT-PCR) and protein turnover studies reveal that Mek1/2 inhibitors do not target transcriptional regulation of ABCA1 and ABCG1, but promote ABCA1 and ABCG1 protein degradation in HuH7 and CHO cells, respectively. In line with published data from mouse macrophages, blocking Mek1/2 activity upregulates ABCA1 and ABCG1 protein levels in human THP1 macrophages, indicating opposite roles for the Ras/MAPK pathway in the regulation of ABC transporter activity in macrophages compared to steroidogenic and hepatic cell types. In summary, this study suggests that Ras/MAPK signaling modulates PPARα- and LXR-dependent protein degradation pathways in a cell-specific manner to regulate the expression levels of ABCA1 and ABCG1 transporters.
Resumo:
Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.
Resumo:
A comparative study of the parts played by technetium-99m diphosphonate and gallium-67 citrate bone scanning in the early diagnosis of infectious spondylodiscitis is presented. Nineteen patients were included in the study. All patients (11 men aged 19-70 years and eight women aged 18-72 years) had a history of back pain varying in duration from one to 15 weeks. A 99mTc diphosphonate bone scan was positive in 17 patients. The two patients with negative results had less than two weeks of back pain. The 67Ga citrate bone scan showed uptake in all patients.
Resumo:
The cytoskeleton (CSK) is a nonequilibrium polymer network that uses hydrolyzable sources of free energy such as adenosine triphosphate (ATP) to remodel its internal structure. As in inert nonequilibrium soft materials, CSK remodeling has been associated with structural rearrangements driven by energy-activated processes. We carry out particle tracking and traction microscopy measurements of alveolar epithelial cells at various temperatures and ATP concentrations. We provide the first experimental evidence that the remodeling dynamics of the CSK is driven by structural rearrangements over free-energy barriers induced by thermally activated forces mediated by ATP. The measured activation energy of these forces is ~40kBTr (kB being the Boltzmann constant and Tr being the room temperature). Our experiments provide clues to understand the analogy between the dynamics of the living CSK and that of inert nonequilibrium soft materials.
Resumo:
A novel two-component system, CbrA-CbrB, was discovered in Pseudomonas aeruginosa; cbrA and cbrB mutants of strain PAO were found to be unable to use several amino acids (such as arginine, histidine and proline), polyamines and agmatine as sole carbon and nitrogen sources. These mutants were also unable to use, or used poorly, many other carbon sources, including mannitol, glucose, pyruvate and citrate. A 7 kb EcoRI fragment carrying the cbrA and cbrB genes was cloned and sequenced. The cbrA and cbrB genes encode a sensor/histidine kinase (Mr 108 379, 983 residues) and a cognate response regulator (Mr 52 254, 478 residues) respectively. The amino-terminal half (490 residues) of CbrA appears to be a sensor membrane domain, as predicted by 12 possible transmembrane helices, whereas the carboxy-terminal part shares homology with the histidine kinases of the NtrB family. The CbrB response regulator shows similarity to the NtrC family members. Complementation and primer extension experiments indicated that cbrA and cbrB are transcribed from separate promoters. In cbrA or cbrB mutants, as well as in the allelic argR9901 and argR9902 mutants, the aot-argR operon was not induced by arginine, indicating an essential role for this two-component system in the expression of the ArgR-dependent catabolic pathways, including the aruCFGDB operon specifying the major aerobic arginine catabolic pathway. The histidine catabolic enzyme histidase was not expressed in cbrAB mutants, even in the presence of histidine. In contrast, proline dehydrogenase, responsible for proline utilization (Pru), was expressed in a cbrB mutant at a level comparable with that of the wild-type strain. When succinate or other C4-dicarboxylates were added to proline medium at 1 mM, the cbrB mutant was restored to a Pru+ phenotype. Such a succinate-dependent Pru+ property was almost abolished by 20 mM ammonia. In conclusion, the CbrA-CbrB system controls the expression of several catabolic pathways and, perhaps together with the NtrB-NtrC system, appears to ensure the intracellular carbon: nitrogen balance in P. aeruginosa.
Resumo:
Le cancer colorectal est la 3ème cause de décès liée au cancer dans l'Europe de l'Ouest et nécessite une prise en charge pluridisciplinaire. Les thérapies anticancéreuses récentes développées visent à inhiber les voies de signalisation cellulaires responsables de la prolifération des cellules tumorales. L'inhibition de la voie de signalisation cellulaire mTOR, est une stratégie prometteuse. En effet, mTOR est souvent suractivé dans les cellules du cancer colorectal et régule la croissance, la prolifération et la survie cellulaire. De nombreuses études récentes ont démontrés l'importance de l'activité de mTOR dans le développement du cancer colorectal et l'efficacité anti-tumorale des inhibiteurs allostériques de mTOR, telle que la rapamycine. Récemment, une nouvelle classe d'inhibiteur de mTOR, notamment PP242 et NVP-BEZ235, agissant comme inhibiteur ATP- compétitif a été développée. L'efficacité de ces inhibiteurs n'a pas été démontrée dans le contexte du cancer colorectal. Dans cette étude, nous avons comparé l'effet de PP242, un inhibiteur ATP-compétitif de mTOR et NVP-BEZ235, un inhibiteur dual de PI3K/mTOR par rapport à la rapamycine. Nous avons étudié, in vitro, leur effet sur la croissance, la prolifération et la survie cellulaire sur des lignées cellulaires du cancer du colon (LS174, SW480 et DLD-1) et, in vivo, sur la croissance de xénogreffes dans un modèle murin. Nous avons émis l'hypothèse que l'effet des ces nouveaux inhibiteurs seraient plus importants qu'avec la rapamycine. Nous avons observé que le PP242 et le NVP-BEZ235 réduisent significativement et de façon plus marquée que la rapamycine la croissance, la prolifération et la survie cellulaire des cellules LS174T et DLD-1. Ces inhibiteurs réduisent également la prolifération et la survie cellulaire des cellules SW480 alors que celles-ci étaient résistantes à la rapamycine. Nous avons également observé que les inhibiteurs PP242 et NVP-BEZ235 réduisaient la croissance des xénogreffes avec les lignées cellulaires LS174 et SW480. Finalement, nous avons remarqué que l'effet anti-tumoral des inhibiteurs ATP-compétitifs de mTOR était potentialisé par l'U0126, un inhibiteur de MEK/MAPK, souvent activé dans les voies de signalisation cellulaire du cancer colorectal. En conclusion, nous avons observé que les inhibiteurs ATP-compétitifs de mTOR bloquent la croissance de cellules tumorales du cancer colorectal in vitro et in vivo. Ces résultats démontrent que ces inhibiteurs représentent une option thérapeutique prometteuse dans le traitement du cancer colorectal et méritent d'être évalués dans des études cliniques.
Resumo:
The increase of organic acids in soils can reduce phosphorus sorption. The objective of the study was to evaluate the competitive sorption of P and citrate in clayey and sandy loam soils, using a stirred-flow system. Three experiments were performed with soil samples (0-20 cm layer) of clayey (RYL-cl) and sandy loam (RYL-sl) Red Yellow Latosols (Oxisols). In the first study, the treatments were arranged in a 2 × 5 factorial design, with two soil types and five combinations of phosphorus and citrate application (only P; P + citrate; and citrate applied 7, 22, 52 min before P); in the second, the treatments were arranged in a 2 × 2 factorial design, corresponding to two soils and two forms of P and citrate application (only citrate and citrate + P); and in the third study, the treatments in a 2 × 2 × 6 factorial design consisted of two soils, two extractors (citrate and water) and six incubation times. In the RYL-cl and RYL-sl, P sorption was highest (44 and 25 % of P application, respectively), in the absence of citrate application. Under citrate application, P sorption was reduced in all treatments. The combined application of citrate and P reduced P sorption to 25.8 % of the initially applied P in RYL-cl and to 16.7 % in RYL-sl, in comparison to P without citrate. Citrate sorption in RYL-cl and RYL-sl was highest in the absence of P application, corresponding to 32.0 and 30.2 % of the citrate applied, respectively. With P application, citrate sorption was reduced to 26.4 and 19.7 % of the initially applied citrate in RYL-cl and RYL-sl, respectively. Phosphorus desorption was greater when citrate was used. Phosphorus desorption with citrate and water was higher in the beginning (until 24 h of incubation of P) in RYL-cl and RYL-sl, indicating a rapid initial phase, followed by a slow release phase. This suggests that according to the contact time of P with the soil colloids, the previously adsorbed P can be released to the soil solution in the presence of competing ligands such as citrate. In conclusion, a soil management with continuous input of organic acids is desirable, in view of their potential to compete for P sorption sites, especially in rather weathered soils.
Resumo:
Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.
Resumo:
A comparative study of the parts played by technetium-99m diphosphonate and gallium-67 citrate bone scanning in the early diagnosis of infectious spondylodiscitis is presented. Nineteen patients were included in the study. All patients (11 men aged 19-70 years and eight women aged 18-72 years) had a history of back pain varying in duration from one to 15 weeks. A 99mTc diphosphonate bone scan was positive in 17 patients. The two patients with negative results had less than two weeks of back pain. The 67Ga citrate bone scan showed uptake in all patients.
Resumo:
Tissue protein hypercatabolism (TPH) is a most important feature in cancer cachexia, particularly with regard to the skeletal muscle. The rat ascites hepatoma Yoshida AH-130 is a very suitable model system for studying the mechanisms involved in the processes that lead to tissue depletion, since it induces in the host a rapid and progressive muscle waste mainly due to TPH (Tessitore, L., G. Bonelli, and F. M. Baccino. 1987. Biochem. J. 241:153-159). Detectable plasma levels of tumor necrosis factor-alpha associated with marked perturbations in the hormonal homeostasis have been shown to concur in forcing metabolism into a catabolic setting (Tessitore, L., P. Costelli, and F. M. Baccino. 1993. Br. J. Cancer. 67:15-23). The present study was directed to investigate if beta 2-adrenergic agonists, which are known to favor skeletal muscle hypertrophy, could effectively antagonize the enhanced muscle protein breakdown in this cancer cachexia model. One such agent, i.e., clenbuterol, indeed largely prevented skeletal muscle waste in AH-130-bearing rats by restoring protein degradative rates close to control values. This normalization of protein breakdown rates was achieved through a decrease of the hyperactivation of the ATP-ubiquitin-dependent proteolytic pathway, as previously demonstrated in our laboratory (Llovera, M., C. García-Martínez, N. Agell, M. Marzábal, F. J. López-Soriano, and J. M. Argilés. 1994. FEBS (Fed. Eur. Biochem. Soc.) Lett. 338:311-318). By contrast, the drug did not exert any measurable effect on various parenchymal organs, nor did it modify the plasma level of corticosterone and insulin, which were increased and decreased, respectively, in the tumor hosts. The present data give new insights into the mechanisms by which clenbuterol exerts its preventive effect on muscle protein waste and seem to warrant the implementation of experimental protocols involving the use of clenbuterol or alike drugs in the treatment of pathological states involving TPH, particularly in skeletal muscle and heart, such as in the present model of cancer cachexia.
Resumo:
High mortality in newborn babies with congenital diaphragmatic hernia (CDH) is principally due to persistent pulmonary hypertension. ATP-dependent potassium (K(ATP)) channels might modulate pulmonary vascular tone. We have assessed the effects of Pinacidil, a K(ATP) channel opener, and glibenclamide (GLI), a K(ATP) channel blocker, in near full-term lambs with and without CDH. In vivo, pulmonary hemodynamics were assessed by means of pressure and blood flow catheters. In vitro, we used isolated pulmonary vessels and immunohistochemistry to detect the presence of K(ATP) channels in pulmonary tissue. In vivo, pinacidil (2 mg) significantly reduced pulmonary vascular resistance (PVR) in both controls and CDH animals. GLI (30 mg) significantly increased pulmonary arterial pressure (PAP) and PVR in control animals only. In vitro, pinacidil (10 microM) relaxed, precontracted arteries from lambs with and without CDH. GLI (10(-5) microM) did not raise the basal tone of vessels. We conclude that activation of K(ATP) channels could be of interest to reduce pulmonary vascular tone in fetal lambs with CDH, a condition often associated with persistent pulmonary hypertension of the newborn.
Resumo:
Our previous investigation on Candida glabrata azole-resistant isolates identified two isolates with unaltered expression of CgCDR1/CgCDR2, but with upregulation of another ATP-binding cassette transporter, CgSNQ2, which is a gene highly similar to ScSNQ2 from Saccharomyces cerevisiae. One of the two isolates (BPY55) was used here to elucidate this phenomenon. Disruption of CgSNQ2 in BPY55 decreased azole resistance, whereas reintroduction of the gene in a CgSNQ2 deletion mutant fully reversed this effect. Expression of CgSNQ2 in a S. cerevisiae strain lacking PDR5 mediated not only resistance to azoles but also to 4-nitroquinoline N-oxide, which is a ScSNQ2-specific substrate. A putative gain-of-function mutation, P822L, was identified in CgPDR1 from BPY55. Disruption of CgPDR1 in BPY55 conferred enhanced azole susceptibility and eliminated CgSNQ2 expression, whereas introduction of the mutated allele in a susceptible strain where CgPDR1 had been disrupted conferred azole resistance and CgSNQ2 upregulation, indicating that CgSNQ2 was controlled by CgPDR1. Finally, CgSNQ2 was shown to be involved in the in vivo response to fluconazole. Together, our data first demonstrate that CgSNQ2 contributes to the development of CgPDR1-dependent azole resistance in C. glabrata. The overlapping in function and regulation between CgSNQ2 and ScSNQ2 further highlight the relationship between S. cerevisiae and C. glabrata.
Resumo:
Regional citrate anticoagulation of the extracorporeal circuits (CRA) experienced considerable growth over the past decade. This development is partly explained by the significant progresses made in the field of bioengineering. These allow a secure administration of citrate, while an increasing availability of ionized calcium measurement at the bedside allows reactivity in monitoring the treatment. An increasing severity of the medical condition of patients requiring blood purification treatment gives more contrast to the profile of patient who may benefit from a CRA. If some methods of renal replacement therapy are well suited to this mode of anticoagulation, others are, to date, only at the stage of development and are applied under close medical supervision.