994 resultados para Atomic system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With one weak probe field and two strong pumping fields, the possibility of producing superluminal optical solitons is discussed in a lifetime-broadened inverted-Y atomic medium with proper parameters. As the group velocity of the solitons is larger than c, its occurrence can be controlled by modulating the intensities and the detunings of lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under the circumstance of a Gaussian control field, the cold atomic medium with electromagnetically induced transparency (EIT) turns out to be the special medium with the quadratic index distribution which is controllable online. In our study, the optical system occupies a portion of the EIT medium which acts as an imaging device. With the help of the Collins formula, the analytic expression for the spatial distribution of the probe field in the cold atomic medium is obtained as well as the location of the imaging. The methods for improving the visibility of the imaging are proposed in this paper. Moreover, we also show that the shapes of the images on the output are strongly influenced by the intensity of the control field, which provides a potential optical processing method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I:

The earth's core is generally accepted to be composed primarily of iron, with an admixture of other elements. Because the outer core is observed not to transmit shear waves at seismic frequencies, it is known to be liquid or primarily liquid. A new equation of state is presented for liquid iron, in the form of parameters for the 4th order Birch-Murnaghan and Mie-Grüneisen equations of state. The parameters were constrained by a set of values for numerous properties compiled from the literature. A detailed theoretical model is used to constrain the P-T behavior of the heat capacity, based on recent advances in the understanding of the interatomic potentials for transition metals. At the reference pressure of 105 Pa and temperature of 1811 K (the normal melting point of Fe), the parameters are: ρ = 7037 kg/m3, KS0 = 110 GPa, KS' = 4.53, KS" = -.0337 GPa-1, and γ = 2.8, with γ α ρ-1.17. Comparison of the properties predicted by this model with the earth model PREM indicates that the outer core is 8 to 10 % less dense than pure liquid Fe at the same conditions. The inner core is also found to be 3 to 5% less dense than pure liquid Fe, supporting the idea of a partially molten inner core. The density deficit of the outer core implies that the elements dissolved in the liquid Fe are predominantly of lower atomic weight than Fe. Of the candidate light elements favored by researchers, only sulfur readily dissolves into Fe at low pressure, which means that this element was almost certainly concentrated in the core at early times. New melting data are presented for FeS and FeS2 which indicate that the FeS2 is the S-hearing liquidus solid phase at inner core pressures. Consideration of the requirement that the inner core boundary be observable by seismological means and the freezing behavior of solutions leads to the possibility that the outer core may contain a significant fraction of solid material. It is found that convection in the outer core is not hindered if the solid particles are entrained in the fluid flow. This model for a core of Fe and S admits temperatures in the range 3450K to 4200K at the top of the core. An all liquid Fe-S outer core would require a temperature of about 4900 K at the top of the core.

Part II.

The abundance of uses for organic compounds in the modern world results in many applications in which these materials are subjected to high pressures. This leads to the desire to be able to describe the behavior of these materials under such conditions. Unfortunately, the number of compounds is much greater than the number of experimental data available for many of the important properties. In the past, one approach that has worked well is the calculation of appropriate properties by summing the contributions from the organic functional groups making up molecules of the compounds in question. A new set of group contributions for the molar volume, volume thermal expansivity, heat capacity, and the Rao function is presented for functional groups containing C, H, and O. This set is, in most cases, limited in application to low molecular liquids. A new technique for the calculation of the pressure derivative of the bulk modulus is also presented. Comparison with data indicates that the presented technique works very well for most low molecular hydrocarbon liquids and somewhat less well for oxygen-bearing compounds. A similar comparison of previous results for polymers indicates that the existing tabulations of group contributions for this class of materials is in need of revision. There is also evidence that the Rao function contributions for polymers and low molecular compounds are somewhat different.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The centralized paradigm of a single controller and a single plant upon which modern control theory is built is no longer applicable to modern cyber-physical systems of interest, such as the power-grid, software defined networks or automated highways systems, as these are all large-scale and spatially distributed. Both the scale and the distributed nature of these systems has motivated the decentralization of control schemes into local sub-controllers that measure, exchange and act on locally available subsets of the globally available system information. This decentralization of control logic leads to different decision makers acting on asymmetric information sets, introduces the need for coordination between them, and perhaps not surprisingly makes the resulting optimal control problem much harder to solve. In fact, shortly after such questions were posed, it was realized that seemingly simple decentralized optimal control problems are computationally intractable to solve, with the Wistenhausen counterexample being a famous instance of this phenomenon. Spurred on by this perhaps discouraging result, a concerted 40 year effort to identify tractable classes of distributed optimal control problems culminated in the notion of quadratic invariance, which loosely states that if sub-controllers can exchange information with each other at least as quickly as the effect of their control actions propagates through the plant, then the resulting distributed optimal control problem admits a convex formulation.

The identification of quadratic invariance as an appropriate means of "convexifying" distributed optimal control problems led to a renewed enthusiasm in the controller synthesis community, resulting in a rich set of results over the past decade. The contributions of this thesis can be seen as being a part of this broader family of results, with a particular focus on closing the gap between theory and practice by relaxing or removing assumptions made in the traditional distributed optimal control framework. Our contributions are to the foundational theory of distributed optimal control, and fall under three broad categories, namely controller synthesis, architecture design and system identification.

We begin by providing two novel controller synthesis algorithms. The first is a solution to the distributed H-infinity optimal control problem subject to delay constraints, and provides the only known exact characterization of delay-constrained distributed controllers satisfying an H-infinity norm bound. The second is an explicit dynamic programming solution to a two player LQR state-feedback problem with varying delays. Accommodating varying delays represents an important first step in combining distributed optimal control theory with the area of Networked Control Systems that considers lossy channels in the feedback loop. Our next set of results are concerned with controller architecture design. When designing controllers for large-scale systems, the architectural aspects of the controller such as the placement of actuators, sensors, and the communication links between them can no longer be taken as given -- indeed the task of designing this architecture is now as important as the design of the control laws themselves. To address this task, we formulate the Regularization for Design (RFD) framework, which is a unifying computationally tractable approach, based on the model matching framework and atomic norm regularization, for the simultaneous co-design of a structured optimal controller and the architecture needed to implement it. Our final result is a contribution to distributed system identification. Traditional system identification techniques such as subspace identification are not computationally scalable, and destroy rather than leverage any a priori information about the system's interconnection structure. We argue that in the context of system identification, an essential building block of any scalable algorithm is the ability to estimate local dynamics within a large interconnected system. To that end we propose a promising heuristic for identifying the dynamics of a subsystem that is still connected to a large system. We exploit the fact that the transfer function of the local dynamics is low-order, but full-rank, while the transfer function of the global dynamics is high-order, but low-rank, to formulate this separation task as a nuclear norm minimization problem. Finally, we conclude with a brief discussion of future research directions, with a particular emphasis on how to incorporate the results of this thesis, and those of optimal control theory in general, into a broader theory of dynamics, control and optimization in layered architectures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a method to explore the configurational phase space of chemical systems. It is based on the nested sampling algorithm recently proposed by Skilling (AIP Conf. Proc. 2004, 395; J. Bayesian Anal. 2006, 1, 833) and allows us to explore the entire potential energy surface (PES) efficiently in an unbiased way. The algorithm has two parameters which directly control the trade-off between the resolution with which the space is explored and the computational cost. We demonstrate the use of nested sampling on Lennard-Jones (LJ) clusters. Nested sampling provides a straightforward approximation for the partition function; thus, evaluating expectation values of arbitrary smooth operators at arbitrary temperatures becomes a simple postprocessing step. Access to absolute free energies allows us to determine the temperature-density phase diagram for LJ cluster stability. Even for relatively small clusters, the efficiency gain over parallel tempering in calculating the heat capacity is an order of magnitude or more. Furthermore, by analyzing the topology of the resulting samples, we are able to visualize the PES in a new and illuminating way. We identify a discretely valued order parameter with basins and suprabasins of the PES, allowing a straightforward and unambiguous definition of macroscopic states of an atomistic system and the evaluation of the associated free energies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rapid and sensitive method for separation and determination of Cr(VI) and Cr(III) in bottom mud of lake by flow injection on-line preconcentrtion system and GFAAS was developed. The available Cr(VI) and Cr(III) were extracted by HOAc or EDTA + NH4 NO3 and adsorbed simultaneously by an anion and a cation resin microclummn and then eluted simultaneously by 2 mol/L NH4 NO3 + 0.05 mol/L ascorbate and 2 mol/L H2SO4, respectively. The elution was performed for 50 s after adsorption for 2 min, and the efficiencies of elution were 85.4% - 94.8% and 96.7% - 106% for Cr(VI) and Cr(M) respectively. The detection limits of the method were 0.9 mu g/L and 2.7 mu g/L with relative standard deviations of 3.5% and 6.4% for the determination of Cr(VI) and Cr(III) in sample, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the dressed effects of non-degenerate four-wave mixing (NDFWM) and demonstrated a phase-sensitive method of studying the fifth-order nonlinear susceptibility due to atomic coherence in RN-type four-level system. In the presence of a strong coupling field, NDFWM spectrum exhibits Autler-Townes splitting, accompanied by either suppression or enhancement of the NDFWM signal, which is directly related to the competition between the absorption and dispersion contributions. The heterodyne-detected nonlinear absorption and dispersion of six-wave mixing signal in the RN-type system show that the hybrid radiation-matter detuning damping oscillation is in the THz range and can be controlled and modified through the colour-locked correlation of twin noisy fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A compact direct digital frequency synthesizer (DDFS) for system-on-chip implementation of the high precision rubidium atomic frequency standard is developed. For small chip size and low power consumption, the phase to sine mapping data is compressed using sine symmetry technique, sine-phase difference technique, quad line approximation technique,and quantization and error read only memory (QE-ROM) technique. The ROM size is reduced by 98% using these techniques. A compact DDFS chip with 32bit phase storage depth and a 10bit on-chip digital to analog converter has been successfully implemented using a standard 0.35μm CMOS process. The core area of the DDFS is 1.6mm^2. It consumes 167mW at 3.3V,and its spurious free dynamic range is 61dB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modified tapping mode of the atomic force microscope (AFM) was introduced for manipulation, dissection, and lithography. By sufficiently decreasing the amplitude of AFM tip in the normal tapping mode and adjusting the setpoint, the tip-sample interaction can be efficiently controlled. This modified tapping mode has some characteristics of the AFM contact mode and can be used to manipulate nanoparticles, dissect biomolecules, and make lithographs on various surfaces. This method did not need any additional equipment and it can be applied to any AFM system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thin films of poly(methyl methacrylate) (PMMA), poly(styrene-co-acrylonitrile) (SAN) and their blends were prepared by means of spin-coating their corresponding solutions onto silicon wafers, followed by being annealed at different temperatures. The surface phase separations of PMMA/SAN blends were characterized by virtue of atomic force microscopy (AFM). By comparing the tapping mode AFM (TM-AFM) phase images of the pure components and their blends, surface phase separation mechanisms of the blends could be identified as the nucleation and growth mechanism or the spinodal decomposition mechanism. Therefore, the phase diagram of the PMMA/SAN system could be obtained by means of TM-AFM. Contact mode AFM was also used to study the surface morphologies of all the samples and the phase separations of the blends occurred by the spinodal decomposition mechanism could be ascertained. Moreover, X-ray photoelectron spectroscopy was used to characterize the chemical compositions on the surfaces of the samples and the miscibility principle of the PMMA/SAN system was discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A kind of simple atomic force microscopy (AFM) relocated technique, which takes advantage of homemade sample locator system, is used for investigating repeatedly imaging of some specific species on the whole substrate (over 1 x 1 cm(2)) with resolution about 400 nm. As applications of this sample locator system, single extended DNA molecules and plasmid DNA network are shown in different AFM operational modes: tapping mode and contact mode with different tips after the substrates have been moved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the measurement of 112 new high-lying odd-parity excited levels of U I in the energy region 35 678-36 696 cm(-1). These levels were obtained with a setup composed of a Nd:YAG-laser-pumped pulsed dye laser system, an atomic beam device, a time-of-flight mass spectrometer, and a boxcar integrator. (C) 2000 Optical Society of America [S0740-3224(99)02309-7] OCIS code: 300.0300.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An information system for inductively coupled plasma atomic emission spectrometry (TCP-BES) in MS Windows environment was developed based on the previous work in the laboratory. The system contains the data of about 28 000 spectral lines and a function of ICP spectral simulation,so it would be very helpful for line selection. The system also contains the Kalman filter and factor analysis programmes written with MS Visual Basic(version 4.0), which can be used for spectral interference correction and peak position optimization. A large amount of real spectral scanning data of rare earth elements were included in the system for user's references. All these characteristics made the system more useful and practical.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method to assign a single number representation for each atom (node) in a molecular graph, Atomic IDentification (AID) number, is proposed based on the counts of weighted paths terminated on that atom. Then, a new topological index, Molecular IDentification (MID) number is developed from AID. The MID is tested systematically, over half a million of structures are examined, and MID shows high discrimination for various structural isomers. Thus it can be used for documentation in the Changchun Institute of Chemistry C-13 NMR information system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most attractive features of derivative spectrometry is its higher resolving power. In the present power, numerical derivative techniques are evaluated from the viewpoint of increase in selectivity, the latter being expressed in terms of the interferent equivalent concentration (IEC). Typical spectral interferences are covered, including flat background, sloped background, simple curved background and various types of line overlap with different overlapping degrees, which were defined as the ratio of the net interfering signal at the analysis wavelength to the peak signal of the interfering line. the IECs in the derivative spectra are decreased by one to two order of magnitudes compared to those in the original spectra, and in the most cases, assume values below the conventional detection limits. The overlapping degree is the dominant factor that determines whether an analysis line can be resolved from an interfering line with the derivative techniques. Generally, the second derivative technique is effective only for line overlap with an overlapping degree of less than 0.8. The effects of other factors such as line shape, data smoothing, step size and the intensity ratio of analyte to interferent on the performance of the derivative techniques are also discussed. All results are illustrated with practical examples.