991 resultados para Atomic hydrogen


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the purpose of rational design of optical materials, distributed atomic polarizabilities of amino acid molecules and their hydrogen-bonded aggregates are calculated in order to identify the most efficient functional groups, able to buildup larger electric susceptibilities in crystals. Moreover, we carefully analyze how the atomic polarizabilities depend on the one-electron basis set or the many-electron Hamiltonian, including both wave function and density functional theory methods. This is useful for selecting the level of theory that best combines high accuracy and low computational costs, very important in particular when using the cluster method to estimate susceptibilities of molecular-based materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have used self-assembled purines and pyrimidines on planar gold surfaces and on gold-coated atomic force microscope (AFM) tips to directly probe intermolecular hydrogen bonds. Electron spectroscopy for chemical analysis (ESCA) and thermal programmed desorption (TPD) measurements of the molecular layers suggested monolayer coverage and a desorption energy of about 25 kcal/mol. Experiments were performed under water, with all four DNA bases immobilized on AFM tips and flat surfaces. Directional hydrogen-bonding interaction between the tip molecules and the surface molecules could be measured only when opposite base-pair coatings were used. The directional interactions were inhibited by excess nucleotide base in solution. Nondirectional van der Waals forces were present in all other cases. Forces as low as two interacting base pairs have been measured. With coated AFM tips, surface chemistry-sensitive recognition atomic force microscopy can be performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrogenation kinetics of Mg is slow, impeding its application for mobile hydrogen storage. We demonstrate by ab initio density functional theory (DFT) calculations that the reaction path can be greatly modified by adding transition metal catalysts. Contrasting with Ti doping, a Pd dopant will result in a very small activation barrier for both dissociation of molecular hydrogen and diffusion of atomic H on the Mg surface. This new computational finding supports for the first time by ab initio simulationthe proposed hydrogen spillover mechanism for rationalizing experimentally observed fast hydrogenation kinetics for Pd-capped Mg materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present gas sensing properties of Pt/graphene-like nano-sheets towards hydrogen gas. The graphene-like nano-sheets were produced via the reduction of spray-coated graphite oxide deposited on SiC substrates by hydrazine vapor. Structural and morphological characterizations of the graphene sheets were analyzed by scanning electron and atomic force microscopy. Current-voltage and dynamic responses of the sensors were investigated towards different concentrations of hydrogen gas in a synthetic air mixture at 100°C. A voltage shift of 100 mV was recorded at 1 mA reverse bias current.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presented is the material and gas sensing properties of graphene-like nano-sheets deposited on 36° YX lithium tantalate (LiTaO3) surface acoustic wave (SAW) transducers. The graphene-like nano-sheets were characterized via scanning electron microscopy (SEM), atomic force microscopy(AFM)and X-ray photoelectron spectroscopy (XPS). The graphenelike nano-sheet/SAW sensors were exposed to different concentrations of hydrogen (H2) gas in a synthetic air at room temperature. The developed sensors exhibit good sensitivity towards low concentrations of H2 in ambient conditions, as well as excellent dynamic performance towards H2 at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnesium and its alloys have shown a great potential in effective hydrogen storage due to their advantages of high volumetric/gravimetric hydrogen storage capacity and low cost. However, the use of these materials in fuel cells for automotive applications at the present time is limited by high hydrogenation temperature and sluggish sorption kinetics. This paper presents the recent results of design and development of magnesium-based nanocomposites demonstrating the catalytic effects of carbon nanotubes and transition metals on hydrogen adsorption in these materials. The results are promising for the application of magnesium materials for hydrogen storage, with significantly reduced absorption temperatures and enhanced ab/desorption kinetics. High level Density Functional Theory calculations support the analysis of the hydrogenation mechanisms by revealing the detailed atomic and molecular interactions that underpin the catalytic roles of incorporated carbon and titanium, providing clear guidance for further design and development of such materials with better hydrogen storage properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact induced chemisorption of hydrocarbon molecules (CH3 and CH2) on H-terminated diamond (001)-(2x1) surface was investigated by molecular dynamics simulation using the many-body Brenner potential. The deposition dynamics of the CH3 radical at impact energies of 0.1-50 eV per molecule was studied and the energy threshold for chemisorption was calculated. The impact-induced decomposition of hydrogen atoms and the dimer opening mechanism on the surface was investigated. Furthermore, the probability for dimer opening event induced by chemisorption of CH, was simulated by randomly varying the impact position as well as the orientation of the molecule relative to the surface. Finally, the energetic hydrocarbons were modeled, slowing down one after the other to simulate the initial fabrication of diamond-like carbon (DLC) films. The structure characteristic in synthesized films with different hydrogen flux was studied. Our results indicate that CH3, CH2 and H are highly reactive and important species in diamond growth. Especially, the fraction of C-atoms in the film having sp(3) hybridization will be enhanced in the presence of H atoms, which is in good agreement with experimental observations. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomic Layer Deposition (ALD) is a chemical, gas-phase thin film deposition method. It is known for its ability for accurate and precise thickness control, and uniform and conformal film growth. One area where ALD has not yet excelled is film deposition at low temperatures. Also deposition of metals, besides the noble metals, has proven to be quite challenging. To alleviate these limitations, more aggressive reactants are required. One such group of reactants are radicals, which may be formed by dissociating gases. Dissociation is most conveniently done with a plasma source. For example, dissociating molecular oxygen or hydrogen, oxygen or hydrogen radicals are generated. The use of radicals in ALD may surmount some of the above limitations: oxide film deposition at low temperatures may become feasible if oxygen radicals are used as they are highly reactive. Also, as hydrogen radicals are very effective reducing agents, they may be used to deposit metals. In this work, a plasma source was incorporated in an existing ALD reactor for radical generation, and the reactor was used to study five different Radical Enhanced ALD processes. The modifications to the existing reactor and the different possibilities during the modification process are discussed. The studied materials include two metals, copper and silver, and three oxides, aluminium oxide, titanium dioxide and tantalum oxide. The materials were characterized and their properties were compared to other variations of the same process, utilizing the same metal precursor, to understand what kind of effect the non-metal precursor has on the film properties and growth characteristics. Both metals were deposited successfully, and silver for the first time by ALD. The films had low resistivity and grew conformally in the ALD mode, demonstrating that the REALD of metals is true ALD. The oxide films had exceptionally high growth rates, and aluminium oxide grew at room temperature with low cycle times and resulted in good quality films. Both aluminium oxide and titanium dioxide were deposited on natural fibres without damaging the fibre. Tantalum oxide was also deposited successfully, with good electrical properties, but at slightly higher temperature than the other two oxides, due to the evaporation temperature required by the metal precursor. Overall, the ability of REALD to deposit metallic and oxide films with high quality at low temperatures was demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supramolecular ordering of organic semiconductors is the key factor defining their electrical characteristics. Yet, it is extremely difficult to control, particularly at the interface with metal and dielectric surfaces in semiconducting devices. We have explored the growth of n-type semiconducting films based on hydrogen-bonded monoalkylnaphthalenediimide (NDI-R) from solution and through vapor deposition on both conductive and insulating surfaces. We combined scanning tunneling and atomic force microscopies with X-ray diffraction analysis to characterize, at the submolecular level, the evolution of the NDI-R molecular packing in going from monolayers to thin films. On a conducting (graphite) surface, the first monolayer of NDI-R molecules adsorbs in a flat-lying (face-on) geometry, whereas in subsequent layers the molecules pack edge-on in islands (Stranski–Krastanov-like growth). On SiO2, the NDI-R molecules form into islands comprising edge-on packed molecules (Volmer–Weber mode). Under all the explored conditions, self-complementary H bonding of the imide groups dictates the molecular assembly. The measured electron mobility of the resulting films is similar to that of dialkylated NDI molecules without H bonding. The work emphasizes the importance of H bonding interactions for controlling the ordering of organic semiconductors, and demonstrates a connection between on-surface self-assembly and the structural parameters of thin films used in electronic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For achieving efficient fusion energy production, the plasma-facing wall materials of the fusion reactor should ensure long time operation. In the next step fusion device, ITER, the first wall region facing the highest heat and particle load, i.e. the divertor area, will mainly consist of tiles based on tungsten. During the reactor operation, the tungsten material is slowly but inevitably saturated with tritium. Tritium is the relatively short-lived hydrogen isotope used in the fusion reaction. The amount of tritium retained in the wall materials should be minimized and its recycling back to the plasma must be unrestrained, otherwise it cannot be used for fueling the plasma. A very expensive and thus economically not viable solution is to replace the first walls quite often. A better solution is to heat the walls to temperatures where tritium is released. Unfortunately, the exact mechanisms of hydrogen release in tungsten are not known. In this thesis both experimental and computational methods have been used for studying the release and retention of hydrogen in tungsten. The experimental work consists of hydrogen implantations into pure polycrystalline tungsten, the determination of the hydrogen concentrations using ion beam analyses (IBA) and monitoring the out-diffused hydrogen gas with thermodesorption spectrometry (TDS) as the tungsten samples are heated at elevated temperatures. Combining IBA methods with TDS, the retained amount of hydrogen is obtained as well as the temperatures needed for the hydrogen release. With computational methods the hydrogen-defect interactions and implantation-induced irradiation damage can be examined at the atomic level. The method of multiscale modelling combines the results obtained from computational methodologies applicable at different length and time scales. Electron density functional theory calculations were used for determining the energetics of the elementary processes of hydrogen in tungsten, such as diffusivity and trapping to vacancies and surfaces. Results from the energetics of pure tungsten defects were used in the development of an classical bond-order potential for describing the tungsten defects to be used in molecular dynamics simulations. The developed potential was utilized in determination of the defect clustering and annihilation properties. These results were further employed in binary collision and rate theory calculations to determine the evolution of large defect clusters that trap hydrogen in the course of implantation. The computational results for the defect and trapped hydrogen concentrations were successfully compared with the experimental results. With the aforedescribed multiscale analysis the experimental results within this thesis and found in the literature were explained both quantitatively and qualitatively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-ray crystallographlc studies on 3′–5′ ollgomers have provided a great deal of information on the stereochemistry and conformational flexibility of nucleic acids and polynucleotides. In contrast, there is very little Information available on 2′–5′ polynucleotides. We have now obtained the crystal structure of Cytidylyl-2′,5′-Adenoslne (C2′p5′A) at atomic resolution to establish the conformational differences between these two classes of polymers. The dlnucleoside phosphate crystallises in the monocllnlc space group C2, with a = 33.912(4)Å, b =16.824(4)Å, c = 12.898(2)Å and 0 = 112.35(1) with two molecules in the asymmetric unit. Spectacularly, the two independent C2′p5′A molecules in the asymmetric unit form right handed miniature parallel stranded double helices with their respective crystallographic two fold (b axis) symmetry mates. Remarkably, the two mini duplexes are almost indistinguishable. The cytosines and adenines form self-pairs with three and two hydrogen bonds respectively. The conformation of the C and A residues about the glycosyl bond is anti same as in the 3′–5′ analog but contrasts the anti and syn geometry of C and A residues in A2′p5′C. The furanose ring conformation is C3′endo, C2′endo mixed puckering as in the C3′p5′A-proflavine complex. A comparison of the backbone torsion angles with other 2′–5′ dinucleoside structures reveals that the major deviations occur in the torsion angles about the C3′–C2′ and C4′-C3′ bonds. A right-handed 2′–5′ parallel stranded double helix having eight base pairs per turn and 45° turn angle between them has been constructed using this dinucleoside phosphate as repeat unit. A discussion on 2′–5′ parallel stranded double helix and its relevance to biological systems is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular Dynamics (MD) simulations provide an atomic level account of the molecular motions and have proven to be immensely useful in the investigation of the dynamical structure of proteins. Once an MD trajectory is obtained, specific interactions at the molecular level can be directly studied by setting up appropriate combinations of distance and angle monitors. However, if a study of the dynamical behavior of secondary structures in proteins becomes important, this approach can become unwieldy. We present herein a method to study the dynamical stability of secondary structures in proteins, based on a relatively simple analysis of backbone hydrogen bonds. The method was developed for studying the thermal unfolding of beta-lactamases, but can be extended to other systems and adapted to study relevant properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eosinophil Cationic Protein (ECP) is a member of RNase A superfamily which carries out the obligatory catalytic role of cleaving RNA. It is involved in a variety of biological functions. Molecular dynamics simulations followed by essential dynamics analysis on this protein are carried out with the goal of gaining insights into the dynamical properties at atomic level. The top essential modes contribute to subspaces and to the transition phase. Further, the sidechain-sidechain/sidechain-mainchain hydrogen bond clusters are analyzed in the top modes, and compared with those of crystal structure. The role of residues identified by these methods is discussed in the context of concerted motion, structure and stability of the protein.