994 resultados para Assay Development
Resumo:
There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist 'Eve' designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax.
Resumo:
Melatonin (MEL) acts as a powerful scavenger of free radicals and direct gonadal responses to melatonin have been reported in the literature. Few studies, however, have evaluated the effect of MEL during in vitro maturation (IVM) on bovine embryos. This study tested the addition of MEL to maturation medium (MM) with no gonadotropins on nuclear maturation and embryo development rates and the incidence of DNA damage in resulting embryos. Cumulus-oocyte complexes were aspirated from abattoir ovaries and cultured in MM (TCM-199 medium supplemented with 10% fetal calf serum - FCS) at 39ºC and 5% CO2 in air. After 24 hours of culture in MM with 0.5 µg mL-1 FSH and 5.0 µg mL-1 LH; 10-9 M MEL) or 10-9 M MEL, 0.5 µg mL-1 FSH and 5.0 µg mL-1 LH, the oocytes were stained with Hoechst 33342 to evaluate nuclear maturation rate. After in vitro fertilization and embryo culture, development rates were evaluated and the blastocysts were assessed for DNA damage by Comet assay. There was no effect of melatonin added to the MM, alone or in combination with gonadotropins, on nuclear maturation, cleavage and blastocyst rates. These rates ranged between 88% to 90%, 85% to 88% and 42% to 46%, respectively. The extent of DNA damage in embryos was also not affected by MEL supplementation during IVM. The addition of 10-9 M MEL to the MM failed to improve nuclear maturation and embryo development rates and the incidence of DNA damage in resulting embryos, but was able to properly substitute for gonadotropins during IVM.
Resumo:
Background: High-throughput SNP genotyping has become an essential requirement for molecular breeding and population genomics studies in plant species. Large scale SNP developments have been reported for several mainstream crops. A growing interest now exists to expand the speed and resolution of genetic analysis to outbred species with highly heterozygous genomes. When nucleotide diversity is high, a refined diagnosis of the target SNP sequence context is needed to convert queried SNPs into high-quality genotypes using the Golden Gate Genotyping Technology (GGGT). This issue becomes exacerbated when attempting to transfer SNPs across species, a scarcely explored topic in plants, and likely to become significant for population genomics and inter specific breeding applications in less domesticated and less funded plant genera. Results: We have successfully developed the first set of 768 SNPs assayed by the GGGT for the highly heterozygous genome of Eucalyptus from a mixed Sanger/454 database with 1,164,695 ESTs and the preliminary 4.5X draft genome sequence for E. grandis. A systematic assessment of in silico SNP filtering requirements showed that stringent constraints on the SNP surrounding sequences have a significant impact on SNP genotyping performance and polymorphism. SNP assay success was high for the 288 SNPs selected with more rigorous in silico constraints; 93% of them provided high quality genotype calls and 71% of them were polymorphic in a diverse panel of 96 individuals of five different species. SNP reliability was high across nine Eucalyptus species belonging to three sections within subgenus Symphomyrtus and still satisfactory across species of two additional subgenera, although polymorphism declined as phylogenetic distance increased. Conclusions: This study indicates that the GGGT performs well both within and across species of Eucalyptus notwithstanding its nucleotide diversity >= 2%. The development of a much larger array of informative SNPs across multiple Eucalyptus species is feasible, although strongly dependent on having a representative and sufficiently deep collection of sequences from many individuals of each target species. A higher density SNP platform will be instrumental to undertake genome-wide phylogenetic and population genomics studies and to implement molecular breeding by Genomic Selection in Eucalyptus.
Resumo:
Background: Hepatitis C virus (HCV) genotyping is the most significant predictor of the response to antiviral therapy. The aim of this study was to develop and evaluate a novel real-time PCR method for HCV genotyping based on the NS5B region. Methodology/Principal Findings: Two triplex reaction sets were designed, one to detect genotypes 1a, 1b and 3a; and another to detect genotypes 2a, 2b, and 2c. This approach had an overall sensitivity of 97.0%, detecting 295 of the 304 tested samples. All samples genotyped by real-time PCR had the same type that was assigned using LiPA version 1 (Line in Probe Assay). Although LiPA v. 1 was not able to subtype 68 of the 295 samples (23.0%) and rendered different subtype results from those assigned by real-time PCR for 12/295 samples (4.0%), NS5B sequencing and real-time PCR results agreed in all 146 tested cases. Analytical sensitivity of the real-time PCR assay was determined by end-point dilution of the 5000 IU/ml member of the OptiQuant HCV RNA panel. The lower limit of detection was estimated to be 125 IU/ml for genotype 3a, 250 IU/ml for genotypes 1b and 2b, and 500 IU/ml for genotype 1a. Conclusions/Significance: The total time required for performing this assay was two hours, compared to four hours required for LiPA v. 1 after PCR-amplification. Furthermore, the estimated reaction cost was nine times lower than that of available commercial methods in Brazil. Thus, we have developed an efficient, feasible, and affordable method for HCV genotype identification.
Resumo:
The performance of a serum PCR assay was compared with that of a blood PCR assay for the diagnosis of canine brucellosis caused by Brucella canis in 72 dogs. The dogs were classified into three groups (infected, non-infected and suspected brucellosis) according to the results of blood culture and serological tests. The sensitivities of blood PCR and serum PCR were, respectively, 97.14 per cent and 25.71 per cent. The specificities of both were 100 per cent. In the group of dogs with suspected brucellosis, three were positive by blood PCR and none was positive by serum PCR. Serum PCR showed little value for the direct diagnosis of canine brucellosis as the assay had low diagnostic sensitivity and fewer positive dogs were detected by this test than by blood culture, blood PCR, rapid slide agglutination test (RSAT) and RSAT with 2-mercaptoethanol.
Resumo:
Background: Progress towards the development of a malaria vaccine against Plasmodium vivax, the most widely distributed human malaria parasite, will require a better understanding of the immune responses that confer clinical protection to patients in regions where malaria is endemic. Methods: Glutathione S-transferase (GST) and GST-fusion proteins representing the N-terminus of the merozoite surface protein 1 of P. vivax, PvMSP1-N, and the C-terminus, PvMSP1-C, were covalently coupled to BioPlex carboxylated beads. Recombinant proteins and coupled beads were used, respectively, in ELISA and Bioplex assays using immune sera of P. vivax patients from Brazil and PNG to determine IgG and subclass responses. Concordances between the two methods in the seropositivity responses were evaluated using the Kappa statistic and the Spearman's rank correlation. Results: The results using this methodology were compared with the classical microtitre enzyme-linked immnosorbent assay ( ELISA), showing that the assay was sensitive, reproducible and had good concordance with ELISA; yet, further research into different statistical analyses seems desirable before claiming conclusive results exclusively based on multiplex assays. As expected, results demonstrated that PvMSP1 was immunogenic in natural infections of patients from different endemic regions of Brazil and Papua New Guinea ( PNG), and that age correlated only with antibodies against the C-terminus part of the molecule. Furthermore, the IgG subclass profiles were different in these endemic regions having IgG3 predominantly recognizing PvMSP1 in Brazil and IgG1 predominantly recognizing PvMSP1 in PNG. Conclusions: This study validates the use of the multiplex assay to measure naturally-acquired IgG antibodies against the merozoite surface protein 1 of P. vivax.
Resumo:
A simple, rapid and sensitive analytical procedure for the measurement of imiquimod in skin samples after in vitro penetration studies has been developed and validated. In vitro penetration studies were carried out in Franz diffusion cells with porcine skin. Tape stripping technique was used to separate the stratum corneum (SC) from the viable epidermis and dermis. Imiquimod was extracted from skin samples using a 7:3 (v/v) methanol:acetate buffer (100 mm, pH 4.0) solution and ultrasonication. Imiquimod was analyzed by H-PLC using C(8) column and UV detection at 242 ran. The mobile phase used was acetonitrile:acetate buffer (pH 4.0, 100 mM):diethylamine (30:69.85:0.15, v/v) with flow rate 1 mL/min. Imiquimod eluted at 4.1 min and the running time was limited to 6.0 min. The procedure was linear across the following concentration ranges: 100-2500 ng/mL for both SC and tape-stripped skin and 20-800 ng/mL for receptor solution. Intra-day and inter-day accuracy and precision values were lower than 20% at the limit of quantitation. The recovery values ranged from 80 to 100%. The method is adequate to assay imiquimod from skin samples, enabling the determination of the cutaneous penetration profile of uniquimod by in vitro studies. Copyright (C) 2008 John Wiley & Sons, Ltd.
Development and characterization of novel potent and stable inhibitors of endopeptidase EC 3.4.24.15
Resumo:
Solid-phase synthesis was used to prepare a series of modifications to the selective and potent inhibitor of endopeptidase EC 3.4.24.15 (EP24.15), N-[1(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate (cFP), which is degraded at the Ala-Tyr bond, thus severely limiting its utility in vivo. Reducing the amide bond between the Ala and Tyr decreased the potency of the inhibitor to 1/1000. However, the replacement of the second alanine residue immediately adjacent to the tyrosine with alpha-aminoisobutyric acid gave a compound (JA-2) that was equipotent with cFP, with a K-i of 23 nM. Like cFP, JA-2 inhibited the closely related endopeptidase EC 3.4.24.16 1/20 to 1/30 as potently as it did EP24.15, and did not inhibit the other thermolysin-like endopeptidases angiotensin-converting enzyme, endothelin-converting enzyme and neutral endopeptidase. The biological stability of JA-2 was investigated by incubation with a number of membrane and soluble sheep tissue extracts. In contrast with cFP, JA-2 remained intact after 48 h of incubation with all tissues examined. Further modifications to the JA-2 compound failed to improve the potency of this inhibitor. Hence JA-2 is a potent, EP24.15-preferential and biologically stable inhibitor, therefore providing a valuable tool for further assessing the biological functions of EP24.15.
Resumo:
Contents Sex pre-selection of bovine offsprings has commercial relevance for cattle breeders and several methods have been used for embryo sex determination. Polymerase chain reaction (PCR) has proven to be a reliable procedure for accomplishing embryo sexing. To date, most of the PCR-specific primers are derived from the few single-copy Y-chromosome-specific gene sequences already identified in bovines. Their detection demands higher amounts of embryonic genomic material or a nested amplification reaction. In order to circumvent this, limitation we searched for new male-specific sequences potentially useful in embryo sexing using random amplified polymorphic DNA (RAPD) analysis. Random amplified polymorphic DNA (RAPD) assay reproducibility problems can be overcome by its conversion into Sequence Characterized Amplified Region (SCAR) markers. In this work, we describe the identification of two bovine male-specific markers (OPC16(323) and OPF10(1168)) by means of RAPD. These markers were successfully converted into SCARs (OPC16(726) and OPF10(984)) using two pairs of specific primers.Furthermore, inverse PCR (iPCR) methodology was successfully applied to elongate OPC16(323) marker in 159% (from 323 to 837 bp). Both markers are shown to be highly conserved (similarity >= 95%) among bovine zebu and taurine cattle; OPC16(323) is also highly similar to a bubaline Y-chromosome-specific sequence. The primers derived from the two Y-chromosome-specific conserved sequences described in this article showed 100% accuracy when used for identifying male and female bovine genomic DNA, thereby proving their potential usefulness for bovine embryo sexing.
Resumo:
An increased risk of early pregnancy loss in women briefly exposed to high levels of ambient particulate matter during the preconceptional period was recently observed. The effects of this exposure on early embryo development are unknown. This study was designed to assess the dose-response and biological effects of diesel exhaust particles (DEP) on in vitro embryo development using the in vitro fertilization (IVF) mouse model. Zygotes obtained from superovulated mice after IVF were randomly cultured in different DEP concentrations (0, 0.2, 2, and 20 mu g/cm(2)) for 5 days and observed for their capacity to attach and develop on a fibronectin matrix until day 8. Main outcome measures included blastocyst rates 96 and 120 h after insemination, hatching discriminatory score, total cell count, proportion of cell allocation to inner cell mass (ICM) and trophectoderm (TE), ICM morphology, attachment rate and outgrowth area, apoptosis and necrosis rates, and Oct-4 and Cdx-2 expression. Multivariate analysis showed a negative dose-dependent effect on early embryo development and hatching process, blastocyst cell allocation, and ICM morphology. Although blastocyst attachment and outgrowth were not affected by DEP, a significant impairment of ICM integrity was observed in day 8 blastocysts. Cell death through apoptosis was significantly higher after DEP exposure. Oct-4 expression and the Oct-4/Cdx-2 ratio were significantly decreased in day 5 blastocysts irrespective of DEP concentration. Results suggest that DEP appear to play an important role in disrupting cell lineage segregation and ICM morphological integrity even at lower concentrations, compromising future growth and viability of the blastocyst.
Resumo:
Objective: The objective of this study was to determine the expression of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) during apical periodontitis development. Methods: Using an experimental design of induced periapical lesions in rats and immunohistochemistry assay as investigative tool, the MMP-2 and MMP-9 expression and distribution were evaluated at 3, 7,14, 21, 30,60 and 90 days after coronary access and pulp exposure of the first left mandibular molar to the oral environment. Two blind observers scored the immunoreactivity. A semi-quantitative analysis was performed. Results: Except at day 3, MMP-2 and MMP-9 immunostaining was observed in all experimental periods. The MMP-2 (p = 0.004) and MMP-9 (p = 0.005) immunostaining was higher in the period between 7 and 21 days. They were mainly observed in cells surrounding the apical foramen and adjacent periapical areas. Cells into the hypercementosis areas were strongly stained while both osteoblasts and osteoclasts; presented discrete staining along of this study. No staining was observed on epithelial walls. At 30, 60 and 90 days, the subjacent connective tissue presented intense MMP-2 and MMP-9 immunostaining in mononuclear cells (suggestive of fibroblasts, macrophages, infiltrating neutrophils and lymphocytes). Conclusion: The results observed in this study suggest that MMP-2 and MMP-9 play a critical role in the development of inflammatory periapical lesions, probably involved in the extracellular matrix (ECM) degradation during the initial phase of the lesion development. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Conventional methods for detecting differences in microsatellite repeat lengths rely on electrophoretic fractionation on long denaturing polyacrylamide gels, a time-consuming and labor-intensive method. Therefore, there is a need for the development of new and rapid approaches to routinely detect such length polymorphisms. The advent of techniques allowing the coupling of DNA molecules to solid surfaces has provided new prospects in the area of mutation. We describe here the development and optimization of the ligase-assisted spacer addition (LASA) method, a novel and rapid procedure based on an ELISA format to measure microsatellite repeat lengths. The LASA assay was successfully applied to a set of 11 bird samples to assess its capability as a genotyping method.
Resumo:
Current serotyping methods classify Pasteurella multocida into five capsular serogroups (serogroups A, B, D, E, and F) and 16 somatic serotypes (serotypes 1 to 16). In the present study, we have developed a multiplex PCR assay as a rapid alternative to the conventional capsular serotyping system. The serogroup-specific primers used in this assay were designed following identification, sequence determination, and analysis of the capsular biosynthetic loci of each capsular serogroup. The entire capsular biosynthetic loci of P. multocida A:1 (X-73) and B:2 (M1404) have been cloned and sequenced previously (J. Y. Chung, Y. M. Zhang, and B. Adler, FEMS Microbiol. Lett. 166:289-296, 1998; J. D. Boyce, J. Y. Chung, and B. Adler, Vet. Microbiol. 72:121-134, 2000). Nucleotide sequence analysis of the biosynthetic region (region 2) from each of the remaining three serogroups, serogroups D, E, and F, identified serogroup-specific regions and gave an indication of the capsular polysaccharide composition. The multiplex capsular PCR assay was highly specific, and its results, with the exception of those for some serogroup F strains, correlated well with conventional serotyping results. Sequence analysis of the strains that gave conflicting results confirmed the validity of the multiplex PCR and indicated that these strains were in fact capsular serogroup A. The multiplex PCR will clarify the distinction between closely related serogroups A and F and constitutes a rapid assay for the definitive classification of P. multocida capsular types
Resumo:
Infection with any 1 of 4 dengue viruses produces a spectrum of clinical illness ranging from a mild undifferentiated febrile illness to dengue fever (DF) to dengue hemorrhagic fever (DHF), a potentially life-threatening disease. The morbidity and mortality of DHF can be reduced by early hospitalization and careful supportive care. To determine its usefulness as a predictor of DHF, plasma levels of the secreted dengue virus nonstructural protein NS1 (sNS1) were measured daily in 32 children with dengue-2 virus infections participating in a prospective, hospital-based study. Free sNS1 levels in plasma correlated with viremia levels and were higher in patients with DHF than in those with DF. An elevated free sNS1 level (greater than or equal to600 ng/mL) within 72 h of illness onset identified patients at risk for developing DHF.