789 resultados para Artificial neural network models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an artificial neural network (ANN) equalizer for transmission performance enhancement of coherent optical OFDM (C-OOFDM) signals. The ANN equalizer showed more efficiency in combating both chromatic dispersion (CD) and single-mode fibre (SMF)-induced non-linearities compared to the least mean square (LMS). The equalizer can offer a 1.5 dB improvement in optical signal-to-noise ratio (OSNR) compared to LMS algorithm for 40 Gbit/s C-OOFDM signals when considering only CD. It is also revealed that ANN can double the transmission distance up to 320 km of SMF compared to the case of LMS, providing a nonlinearity tolerance improvement of ∼0.7 dB OSNR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One major drawback of coherent optical orthogonal frequency-division multiplexing (CO-OFDM) that hitherto remains unsolved is its vulnerability to nonlinear fiber effects due to its high peak-to-average power ratio. Several digital signal processing techniques have been investigated for the compensation of fiber nonlinearities, e.g., digital back-propagation, nonlinear pre- and post-compensation and nonlinear equalizers (NLEs) based on the inverse Volterra-series transfer function (IVSTF). Alternatively, nonlinearities can be mitigated using nonlinear decision classifiers such as artificial neural networks (ANNs) based on a multilayer perceptron. In this paper, ANN-NLE is presented for a 16QAM CO-OFDM system. The capability of the proposed approach to compensate the fiber nonlinearities is numerically demonstrated for up to 100-Gb/s and over 1000km and compared to the benchmark IVSTF-NLE. Results show that in terms of Q-factor, for 100-Gb/s at 1000km of transmission, ANN-NLE outperforms linear equalization and IVSTF-NLE by 3.2dB and 1dB, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel low-complexity artificial neural network (ANN)-based nonlinear equalizer (NLE) for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and compare it with the recent inverse Volterra-series transfer function (IVSTF)-based NLE over up to 1000 km of uncompensated links. Demonstration of ANN-NLE at 80-Gb/s CO-OFDM using 16-quadrature amplitude modulation reveals a Q-factor improvement after 1000-km transmission of 3 and 1 dB with respect to the linear equalization and IVSTF-NLE, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel artificial neural network (ANN)-based nonlinear equalizer (NLE) of low complexity is demonstrated for 40-Gb/s CO-OFDM at 2000 km, revealing ∼1.5 dB enhancement in Q-factor compared to inverse Volterra-series transfer function based NLE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oscillating Water Column (OWC) is one type of promising wave energy devices due to its obvious advantage over many other wave energy converters: no moving component in sea water. Two types of OWCs (bottom-fixed and floating) have been widely investigated, and the bottom-fixed OWCs have been very successful in several practical applications. Recently, the proposal of massive wave energy production and the availability of wave energy have pushed OWC applications from near-shore to deeper water regions where floating OWCs are a better choice. For an OWC under sea waves, the air flow driving air turbine to generate electricity is a random process. In such a working condition, single design/operation point is nonexistent. To improve energy extraction, and to optimise the performance of the device, a system capable of controlling the air turbine rotation speed is desirable. To achieve that, this paper presents a short-term prediction of the random, process by an artificial neural network (ANN), which can provide near-future information for the control system. In this research, ANN is explored and tuned for a better prediction of the airflow (as well as the device motions for a wide application). It is found that, by carefully constructing ANN platform and optimizing the relevant parameters, ANN is capable of predicting the random process a few steps ahead of the real, time with a good accuracy. More importantly, the tuned ANN works for a large range of different types of random, process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiphase flows, type oil–water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a 241Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X –computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air= 3.85; water = 4.31; oil=1.08); stratified (air=3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Internet of things (IoT) is still in its infancy and has attracted much interest in many industrial sectors including medical fields, logistics tracking, smart cities and automobiles. However, as a paradigm, it is susceptible to a range of significant intrusion threats. This paper presents a threat analysis of the IoT and uses an Artificial Neural Network (ANN) to combat these threats. A multi-level perceptron, a type of supervised ANN, is trained using internet packet traces, then is assessed on its ability to thwart Distributed Denial of Service (DDoS/DoS) attacks. This paper focuses on the classification of normal and threat patterns on an IoT Network. The ANN procedure is validated against a simulated IoT network. The experimental results demonstrate 99.4% accuracy and can successfully detect various DDoS/DoS attacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses a multi-layer feedforward (MLF) neural network incident detection model that was developed and evaluated using field data. In contrast to published neural network incident detection models which relied on simulated or limited field data for model development and testing, the model described in this paper was trained and tested on a real-world data set of 100 incidents. The model uses speed, flow and occupancy data measured at dual stations, averaged across all lanes and only from time interval t. The off-line performance of the model is reported under both incident and non-incident conditions. The incident detection performance of the model is reported based on a validation-test data set of 40 incidents that were independent of the 60 incidents used for training. The false alarm rates of the model are evaluated based on non-incident data that were collected from a freeway section which was video-taped for a period of 33 days. A comparative evaluation between the neural network model and the incident detection model in operation on Melbourne's freeways is also presented. The results of the comparative performance evaluation clearly demonstrate the substantial improvement in incident detection performance obtained by the neural network model. The paper also presents additional results that demonstrate how improvements in model performance can be achieved using variable decision thresholds. Finally, the model's fault-tolerance under conditions of corrupt or missing data is investigated and the impact of loop detector failure/malfunction on the performance of the trained model is evaluated and discussed. The results presented in this paper provide a comprehensive evaluation of the developed model and confirm that neural network models can provide fast and reliable incident detection on freeways. (C) 1997 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the problem of spatial data mapping. A new method based on wavelet interpolation and geostatistical prediction (kriging) is proposed. The method - wavelet analysis residual kriging (WARK) - is developed in order to assess the problems rising for highly variable data in presence of spatial trends. In these cases stationary prediction models have very limited application. Wavelet analysis is used to model large-scale structures and kriging of the remaining residuals focuses on small-scale peculiarities. WARK is able to model spatial pattern which features multiscale structure. In the present work WARK is applied to the rainfall data and the results of validation are compared with the ones obtained from neural network residual kriging (NNRK). NNRK is also a residual-based method, which uses artificial neural network to model large-scale non-linear trends. The comparison of the results demonstrates the high quality performance of WARK in predicting hot spots, reproducing global statistical characteristics of the distribution and spatial correlation structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to develop, validate, and compare 190 artificial intelligence-based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate-controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21-day-old chicks) - with the variables dry-bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks - was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro-fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision-making, and they can be embedded in the heating control systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing interest aroused by more advanced forecasting techniques, together with the requirement for more accurate forecasts of tourismdemand at the destination level due to the constant growth of world tourism, has lead us to evaluate the forecasting performance of neural modelling relative to that of time seriesmethods at a regional level. Seasonality and volatility are important features of tourism data, which makes it a particularly favourable context in which to compare the forecasting performance of linear models to that of nonlinear alternative approaches. Pre-processed official statistical data of overnight stays and tourist arrivals fromall the different countries of origin to Catalonia from 2001 to 2009 is used in the study. When comparing the forecasting accuracy of the different techniques for different time horizons, autoregressive integrated moving average models outperform self-exciting threshold autoregressions and artificial neural network models, especially for shorter horizons. These results suggest that the there is a trade-off between the degree of pre-processing and the accuracy of the forecasts obtained with neural networks, which are more suitable in the presence of nonlinearity in the data. In spite of the significant differences between countries, which can be explained by different patterns of consumer behaviour,we also find that forecasts of tourist arrivals aremore accurate than forecasts of overnight stays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this master’s thesis, wind speeds and directions were modeled with the aim of developing suitable models for hourly, daily, weekly and monthly forecasting. Artificial Neural Networks implemented in MATLAB software were used to perform the forecasts. Three main types of artificial neural network were built, namely: Feed forward neural networks, Jordan Elman neural networks and Cascade forward neural networks. Four sub models of each of these neural networks were also built, corresponding to the four forecast horizons, for both wind speeds and directions. A single neural network topology was used for each of the forecast horizons, regardless of the model type. All the models were then trained with real data of wind speeds and directions collected over a period of two years in the municipal region of Puumala in Finland. Only 70% of the data was used for training, validation and testing of the models, while the second last 15% of the data was presented to the trained models for verification. The model outputs were then compared to the last 15% of the original data, by measuring the mean square errors and sum square errors between them. Based on the results, the feed forward networks returned the lowest generalization errors for hourly, weekly and monthly forecasts of wind speeds; Jordan Elman networks returned the lowest errors when used for forecasting of daily wind speeds. Cascade forward networks gave the lowest errors when used for forecasting daily, weekly and monthly wind directions; Jordan Elman networks returned the lowest errors when used for hourly forecasting. The errors were relatively low during training of the models, but shot up upon simulation with new inputs. In addition, a combination of hyperbolic tangent transfer functions for both hidden and output layers returned better results compared to other combinations of transfer functions. In general, wind speeds were more predictable as compared to wind directions, opening up opportunities for further research into building better models for wind direction forecasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, practical generation of identification keys for biological taxa using a multilayer perceptron neural network is described. Unlike conventional expert systems, this method does not require an expert for key generation, but is merely based on recordings of observed character states. Like a human taxonomist, its judgement is based on experience, and it is therefore capable of generalized identification of taxa. An initial study involving identification of three species of Iris with greater than 90% confidence is presented here. In addition, the horticulturally significant genus Lithops (Aizoaceae/Mesembryanthemaceae), popular with enthusiasts of succulent plants, is used as a more practical example, because of the difficulty of generation of a conventional key to species, and the existence of a relatively recent monograph. It is demonstrated that such an Artificial Neural Network Key (ANNKEY) can identify more than half (52.9%) of the species in this genus, after training with representative data, even though data for one character is completely missing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cannabinoid compounds have widely been employed because of its medicinal and psychotropic properties. These compounds are isolated from Cannabis sativa (or marijuana) and are used in several medical treatments, such as glaucoma, nausea associated to chemotherapy, pain and many other situations. More recently, its use as appetite stimulant has been indicated in patients with cachexia or AIDS. In this work, the influence of several molecular descriptors on the psychoactivity of 50 cannabinoid compounds is analyzed aiming one obtain a model able to predict the psychoactivity of new cannabinoids. For this purpose, initially, the selection of descriptors was carried out using the Fisher`s weight, the correlation matrix among the calculated variables and principal component analysis. From these analyses, the following descriptors have been considered more relevant: E(LUMO) (energy of the lowest unoccupied molecular orbital), Log P (logarithm of the partition coefficient), VC4 (volume of the substituent at the C4 position) and LP1 (Lovasz-Pelikan index, a molecular branching index). To follow, two neural network models were used to construct a more adequate model for classifying new cannabinoid compounds. The first model employed was multi-layer perceptrons, with algorithm back-propagation, and the second model used was the Kohonen network. The results obtained from both networks were compared and showed that both techniques presented a high percentage of correctness to discriminate psychoactive and psychoinactive compounds. However, the Kohonen network was superior to multi-layer perceptrons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

he simulation of complex LoC (Lab-on-a-Chip) devices is a process that requires solving computationally expensive partial differential equations. An interesting alternative uses artificial neural networks for creating computationally feasible models based on MOR techniques. This paper proposes an approach that uses artificial neural networks for designing LoC components considering the artificial neural network topology as an isomorphism of the LoC device topology. The parameters of the trained neural networks are based on equations for modeling microfluidic circuits, analogous to electronic circuits. The neural networks have been trained to behave like AND, OR, Inverter gates. The parameters of the trained neural networks represent the features of LoC devices that behave as the aforementioned gates. This would mean that LoC devices universally compute.