848 resultados para Artificial intelligence (AI)
Resumo:
Power system organization has gone through huge changes in the recent years. Significant increase in distributed generation (DG) and operation in the scope of liberalized markets are two relevant driving forces for these changes. More recently, the smart grid (SG) concept gained increased importance, and is being seen as a paradigm able to support power system requirements for the future. This paper proposes a computational architecture to support day-ahead Virtual Power Player (VPP) bid formation in the smart grid context. This architecture includes a forecasting module, a resource optimization and Locational Marginal Price (LMP) computation module, and a bid formation module. Due to the involved problems characteristics, the implementation of this architecture requires the use of Artificial Intelligence (AI) techniques. Artificial Neural Networks (ANN) are used for resource and load forecasting and Evolutionary Particle Swarm Optimization (EPSO) is used for energy resource scheduling. The paper presents a case study that considers a 33 bus distribution network that includes 67 distributed generators, 32 loads and 9 storage units.
Resumo:
Mestrado em Computação e Instrumentação Médica
Resumo:
L'objectiu principal del projecte és la creació d'una aplicació per a telèfons intel·ligents que intenti predir la volatilitat no atribuïble al mercat per tal de permetre a l'usuari crear portfolios òptims utilitzant tècniques d'intel·ligència artificial com són les Support Vector Machines (SVM). Una vegada s'hagi predit aquesta volatilitat es crearà un portfolio òptim amb el pes adequat de cada un dels valors, per tal d'obtenir una inversió amb el mínim risc possible.
Resumo:
El present TFM té per objectiu aplicar tècniques d'intel·ligència artificial per realitzar el seguiment de les extremitats dels ratolins i les vibrisses del seu musell. Aquest objectiu es deriva de la necessitat per part dels realitzadors d'experiments optogenètics de registrar els moviments dels ratolins.
Resumo:
L'Hexadom és un joc de taula, de creació pròpia, inspirat en el dòmino tradicional, amb el que hi comparteix l'objectiu: jugar totes les fitxes (o hexàgons en el cas de l'Hexadom). Però hi ha una diferència substancial: la seva complexitat; ja que a diferència del joc original -on s'uneixen els extrems de dues fitxes que tinguin el mateix número- a l'Hexadom s'han d'unir hexàgons entre si, com a mínim per dos dels seus costats, mantenint la coherència entre els colors.
Resumo:
Tutkimuksessa selvitettiin, kuinka hyvä tekoäly tietokonepeliin on mahdollista toteuttaa nykytiedolla ja -tekniikalla. Tekoäly rajattiin tarkoittamaan tekoälyn ohjaamia pelihahmoja. Lisäksi yksinkertaisia tekoälytoteutuksia ei huomioitu. Työ toteutettiin tutustumalla aiheeseen liittyvään kirjallisuuteen sekä kehittäjäyhteisön web-sivustojen tietoon. Hyvän tekoälyn kriteereiksi valikoituivat viihdyttävyys ja uskottavuus. Katsaus suosituimpiin toteuttamistekniikoihin ja tekoälyn mahdollisuuksiin osoitti, että teoriassa hyvinkin edistynyt tekoäly on toteutettavissa. Käytännössä tietokoneen rajalliset resurssit, kehittäjien rajalliset taidot ja pelinkehitysprojektien asettamat vaatimukset näyttävät kuitenkin rajoittavan tekoälyn toteuttamista kaupallisessa tuotteessa.
Resumo:
La comunitat científica que treballa en Intel·ligència Artificial (IA) ha dut a terme una gran quantitat de treball en com la IA pot ajudar a les persones a trobar el que volen dins d'Internet. La idea dels sistemes recomanadors ha estat extensament acceptada pels usuaris. La tasca principal d'un sistema recomanador és localitzar ítems, fonts d'informació i persones relacionades amb els interessos i preferències d'una persona o d'un grup de persones. Això comporta la construcció de models d'usuari i l'habilitat d'anticipar i predir les preferències de l'usuari. Aquesta tesi està focalitzada en l'estudi de tècniques d'IA que millorin el rendiment dels sistemes recomanadors. Inicialment, s'ha dut a terme un anàlisis detallat de l'actual estat de l'art en aquest camp. Aquest treball ha estat organitzat en forma de taxonomia on els sistemes recomanadors existents a Internet es classifiquen en 8 dimensions generals. Aquesta taxonomia ens aporta una base de coneixement indispensable pel disseny de la nostra proposta. El raonament basat en casos (CBR) és un paradigma per aprendre i raonar a partir de la experiència adequat per sistemes recomanadors degut als seus fonaments en el raonament humà. Aquesta tesi planteja una nova proposta de CBR aplicat al camp de la recomanació i un mecanisme d'oblit per perfils basats en casos que controla la rellevància i edat de les experiències passades. Els resultats experimentals demostren que aquesta proposta adapta millor els perfils als usuaris i soluciona el problema de la utilitat que pateixen el sistemes basats en CBR. Els sistemes recomanadors milloren espectacularment la qualitat dels resultats quan informació sobre els altres usuaris és utilitzada quan es recomana a un usuari concret. Aquesta tesi proposa l'agentificació dels sistemes recomanadors per tal de treure profit de propietats interessants dels agents com ara la proactivitat, la encapsulació o l'habilitat social. La col·laboració entre agents es realitza a partir del mètode de filtratge basat en la opinió i del mètode col·laboratiu de filtratge a partir de confiança. Els dos mètodes es basen en un model social de confiança que fa que els agents siguin menys vulnerables als altres quan col·laboren. Els resultats experimentals demostren que els agents recomanadors col·laboratius proposats milloren el rendiment del sistema mentre que preserven la privacitat de les dades personals de l'usuari. Finalment, aquesta tesi també proposa un procediment per avaluar sistemes recomanadors que permet la discussió científica dels resultats. Aquesta proposta simula el comportament dels usuaris al llarg del temps basat en perfils d'usuari reals. Esperem que aquesta metodologia d'avaluació contribueixi al progrés d'aquesta àrea de recerca.
Resumo:
One of the essential needs to implement a successful e-Government web application is security. Web application firewalls (WAF) are the most important tool to secure web applications against the increasing number of web application attacks nowadays. WAFs work in different modes depending on the web traffic filtering approach used, such as positive security mode, negative security mode, session-based mode, or mixed modes. The proposed WAF, which is called (HiWAF), is a web application firewall that works in three modes: positive, negative and session based security modes. The new approach that distinguishes this WAF among other WAFs is that it utilizes the concepts of Artificial Intelligence (AI) instead of regular expressions or other traditional pattern matching techniques as its filtering engine. Both artificial neural networks and fuzzy logic concepts will be used to implement a hybrid intelligent web application firewall that works in three security modes.
Resumo:
This paper presents an approach to integrate an artificial intelligence (AI) technique, concretely rule-based processing, into mobile agents. In particular, it focuses on the aspects of designing and implementing an appropriate inference engine of small size to reduce migration costs. The main goal is combine two lines of agent research, First, the engineering oriented approach on mobile agent architectures, and, second, the AI related approach on inference engines driven by rules expressed in a restricted subset of first-order predicate logic (FOPL). In addition to size reduction, the main functions of this type of engine were isolated, generalized and implemented as dynamic components, making possible not only their migration with the agent, but also their dynamic migration and loading on demand. A set of classes for representing and exchanging knowledge between rule-based systems was also proposed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
With the development of Digital TV, the equipments are becoming more and more modernized in order to popular- ize the information that soon might reach all Brazilian families. That way, we open a space for discussion about the many directions that the usability applied on ISDB-Tb interactivity (Brazilian System of Digital Television) can take. This paper approaches the questions connected to the concept of usability and also the subjects related to the life cycle of some technologies (existence time, obsolescence) Also talks with the definition of interactivityon Digital Television since it is responsible for the emergence of a new contingent of interacting people which goes from the computer and portable equipments users to the passive TV viewers. It’s possible to conclude that the Human-Digital TV Interaction (HDTVI) comprehends the synergy between three actants on Digital TV: the col- lective (or not) TV viewer; the interface and the issuer who can be represented by an Artificial Intelligence (AI) service.
Resumo:
It is well known that control systems are the core of electronic differential systems (EDSs) in electric vehicles (EVs)/hybrid HEVs (HEVs). However, conventional closed-loop control architectures do not completely match the needed ability to reject noises/disturbances, especially regarding the input acceleration signal incoming from the driver's commands, which makes the EDS (in this case) ineffective. Due to this, in this paper, a novel EDS control architecture is proposed to offer a new approach for the traction system that can be used with a great variety of controllers (e. g., classic, artificial intelligence (AI)-based, and modern/robust theory). In addition to this, a modified proportional-integral derivative (PID) controller, an AI-based neuro-fuzzy controller, and a robust optimal H-infinity controller were designed and evaluated to observe and evaluate the versatility of the novel architecture. Kinematic and dynamic models of the vehicle are briefly introduced. Then, simulated and experimental results were presented and discussed. A Hybrid Electric Vehicle in Low Scale (HELVIS)-Sim simulation environment was employed to the preliminary analysis of the proposed EDS architecture. Later, the EDS itself was embedded in a dSpace 1103 high-performance interface board so that real-time control of the rear wheels of the HELVIS platform was successfully achieved.
Resumo:
Health and safety policies may be regarded as the cornerstone for positive prevention of occupational accidents and diseases. The Health and Safety at Work, etc Act 1974 makes it a legal duty for employers to prepare and revise a written statement of a general policy with respect to the health and safety at work of employees as well as the organisation and arrangements for carrying out that policy. Despite their importance and the legal equipment to prepare them, health and safety policies have been found, in a large number of plastics processing companies (particularly small companies), to be poorly prepared, inadequately implemented and monitored. An important cause of these inadequacies is the lack of necessary health and safety knowledge and expertise to prepare, implement and monitor policies. One possible way of remedying this problem is to investigate the feasibility of using computers to develop expert system programs to simulate the health and safety (HS) experts' task of preparing the policies and assisting companies implement and monitor them. Such programs use artificial intelligence (AI) techniques to solve this sort of problems which are heuristic in nature and require symbolic reasoning. Expert systems have been used successfully in a variety of fields such as medicine and engineering. An important phase in the feasibility of development of such systems is the engineering of knowledge which consists of identifying the knowledge required, eliciting, structuring and representing it in an appropriate computer programming language.
Resumo:
In the specific area of software engineering (SE) for self-adaptive systems (SASs) there is a growing research awareness about the synergy between SE and artificial intelligence (AI). However, just few significant results have been published so far. In this paper, we propose a novel and formal Bayesian definition of surprise as the basis for quantitative analysis to measure degrees of uncertainty and deviations of self-adaptive systems from normal behavior. A surprise measures how observed data affects the models or assumptions of the world during runtime. The key idea is that a "surprising" event can be defined as one that causes a large divergence between the belief distributions prior to and posterior to the event occurring. In such a case the system may decide either to adapt accordingly or to flag that an abnormal situation is happening. In this paper, we discuss possible applications of Bayesian theory of surprise for the case of self-adaptive systems using Bayesian dynamic decision networks. Copyright © 2014 ACM.
Resumo:
In this paper RDPPLan, a model for planning with quantitative resources specified as numerical intervals, is presented. Nearly all existing models of planning with resources require to specify exact values for updating resources modified by actions execution. In other words these models cannot deal with more realistic situations in which the resources quantities are not completely known but are bounded by intervals. The RDPPlan model allow to manage domains more tailored to real world, where preconditions and effects over quantitative resources can be specified by intervals of values, in addition mixed logical/quantitative and pure numerical goals can be posed. RDPPlan is based on non directional search over a planning graph, like DPPlan, from which it derives, it uses propagation rules which have been appropriately extended to the management of resource intervals. The propagation rules extended with resources must verify invariant properties over the planning graph which have been proven by the authors and guarantee the correctness of the approach. An implementation of the RDPPlan model is described with search strategies specifically developed for interval resources.