984 resultados para Artificial groundwater recharge.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação de mest., Recursos Hídricos, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2011

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ongoing depletion of the coastal aquifer in the Gaza strip due to groundwater overexploitation has led to the process of seawater intrusion, which is continually becoming a serious problem in Gaza, as the seawater has further invaded into many sections along the coastal shoreline. As a first step to get a hold on the problem, the artificial neural network (ANN)-model has been applied as a new approach and an attractive tool to study and predict groundwater levels without applying physically based hydrologic parameters, and also for the purpose to improve the understanding of complex groundwater systems and which is able to show the effects of hydrologic, meteorological and anthropogenic impacts on the groundwater conditions. Prediction of the future behaviour of the seawater intrusion process in the Gaza aquifer is thus of crucial importance to safeguard the already scarce groundwater resources in the region. In this study the coupled three-dimensional groundwater flow and density-dependent solute transport model SEAWAT, as implemented in Visual MODFLOW, is applied to the Gaza coastal aquifer system to simulate the location and the dynamics of the saltwater–freshwater interface in the aquifer in the time period 2000-2010. A very good agreement between simulated and observed TDS salinities with a correlation coefficient of 0.902 and 0.883 for both steady-state and transient calibration is obtained. After successful calibration of the solute transport model, simulation of future management scenarios for the Gaza aquifer have been carried out, in order to get a more comprehensive view of the effects of the artificial recharge planned in the Gaza strip for some time on forestall, or even to remedy, the presently existing adverse aquifer conditions, namely, low groundwater heads and high salinity by the end of the target simulation period, year 2040. To that avail, numerous management scenarios schemes are examined to maintain the ground water system and to control the salinity distributions within the target period 2011-2040. In the first, pessimistic scenario, it is assumed that pumping from the aquifer continues to increase in the near future to meet the rising water demand, and that there is not further recharge to the aquifer than what is provided by natural precipitation. The second, optimistic scenario assumes that treated surficial wastewater can be used as a source of additional artificial recharge to the aquifer which, in principle, should not only lead to an increased sustainable yield of the latter, but could, in the best of all cases, revert even some of the adverse present-day conditions in the aquifer, i.e., seawater intrusion. This scenario has been done with three different cases which differ by the locations and the extensions of the injection-fields for the treated wastewater. The results obtained with the first (do-nothing) scenario indicate that there will be ongoing negative impacts on the aquifer, such as a higher propensity for strong seawater intrusion into the Gaza aquifer. This scenario illustrates that, compared with 2010 situation of the baseline model, at the end of simulation period, year 2040, the amount of saltwater intrusion into the coastal aquifer will be increased by about 35 %, whereas the salinity will be increased by 34 %. In contrast, all three cases of the second (artificial recharge) scenario group can partly revert the present seawater intrusion. From the water budget point of view, compared with the first (do nothing) scenario, for year 2040, the water added to the aquifer by artificial recharge will reduces the amount of water entering the aquifer by seawater intrusion by 81, 77and 72 %, for the three recharge cases, respectively. Meanwhile, the salinity in the Gaza aquifer will be decreased by 15, 32 and 26% for the three cases, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Results of experiments investigating geochemical changes during artificial recharge of treated wastewater at a coastal sandfill, reclaimed with sand dredged from the seabed, are reported in this paper. Laboratory batch experiments were conducted using secondary effluent (SE) and SE treated with an additional ultrafiltration process (UF), and wastewater treated by reverse osmosis (RO) process, mixed with surface sand obtained from the sandfill. Experiments with RO showed a net increase of 0.41 meq/L, 0.12 meq/L and 0.31 meq/L for Ca(2 + ), Mg(2 + ) and HCO(3) (-), respectively. UF and SE also exhibited net increase in Ca(2 + ), Mg(2 + ) and HCO(3) (-) indicating carbonate mineral dissolution. All three waters were found to be over-saturated with respect to calcite. Carbonate dissolution reactions were observed in the field experiments. However, the presence of imported clays from the borrow source gave rise to ion exchange reactions where Na(+) attached to the clay particles were exchanged for Ca(2 + ) and Mg(2 + ) inducing mineral dissolution, driven by sub-saturation conditions. This resulted in an increase in pH with maximum values in excess of 9.0. It was also found that the sodium adsorption ratio remained high (>10) even after the groundwater had been diluted sufficiently to freshwater levels (ionic strength, I <0.015) indicating a potential for the dispersion of clay particles. This could have a deleterious consequence on porosity and hydraulic conductivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A regional hydrogeochemical model was developed to evaluate the geochemical evolution of different groundwaters in an alluvial aquifer system in the Interior of Oman. In combination with environmental isotopes the model is able to extract qualitative and quantitative information about recharge, groundwater flow paths and hydraulic connections between different aquifers. The main source of water to the alluvial aquifer along the flow paths ofWadi Abyadh andWadi M’uaydin in the piedmont is groundwater from the high-altitude areas of the Jabal Akhdar and local infiltration along the wadi channels. In contrast, the piedmont alluvial aquifer alongWadi Halfayn is primarily replenished by lateral recharge from the ophiolite foothills to the east besides smaller contributions from the Jabal Akhdar and local infiltration. Further down gradient in the Southern Alluvial Plain aquifer a significant source of recharge is direct infiltration of rain and surface runoff, originating from a moisture source that approaches Oman from the south. The model shows that the main geochemical evolution of the alluvial groundwaters occurs along the flow path from the piedmont to the Southern Alluvial Plain, where dedolomitization is responsible for the observed changes in the chemical and carbon isotope composition in these waters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Oxygen and hydrogen isotope analyses of rainfall samples collected on the eastern Batinah coastal plain of northern Oman between 1995 and 1998 indicate two different principal water vapor sources for precipitation in the area: a northern, Mediterranean source and a southern, Indian Ocean source. As a result, two new local meteoric water lines were defined for the study area. Isotopic analyses of groundwater samples from over 200 springs and wells indicate that the main source of water to the Batinah coastal alluvial aquifer is high-altitude rainfall from the adjacent Jabal Akhdar Mountains, originating from a combination of northern and southern moisture sources. The groundwater recharged at high-altitude forms two plumes of water which is depleted in the heavy isotopes 18O and 2H and stretches from the mountains across the coastal plain to the sea, thereby retaining a chemical homogeneity horizontally and vertically down to a depth exceeding 300 m. In contrast, in areas adjacent to these two plumes the alluvial aquifer is geochemically stratified. Near the coast, saline intrusion results in abrupt changes in chloride concentrations and isotope values.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Based on Technical bulletin no. 578, Spreading water for storage underground."

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bibliography: p. 19-21.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Bahamas is a small island nation that is dealing with the problem of freshwater shortage. All of the country’s freshwater is contained in shallow lens aquifers that are recharged solely by rainfall. The country has been struggling to meet the water demands by employing a combination of over-pumping of aquifers, transport of water by barge between islands, and desalination of sea water. In recent decades, new development on New Providence, where the capital city of Nassau is located, has created a large area of impervious surfaces and thereby a substantial amount of runoff with the result that several of the aquifers are not being recharged. A geodatabase was assembled to assess and estimate the quantity of runoff from these impervious surfaces and potential recharge locations were identified using a combination of Geographic Information Systems (GIS) and remote sensing. This study showed that runoff from impervious surfaces in New Providence represents a large freshwater resource that could potentially be used to recharge the lens aquifers on New Providence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year-round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration-to-recharge rates were elevated, while low evapotranspiration-to-recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year-round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration-to-recharge rates were elevated, while low evapotranspiration-to-recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Increasing dependence on groundwater in the Wakal River basin, India, jeopardizes water supply sustainability. A numerical groundwater model was developed to better understand the aquifer system and to evaluate its potential in terms of quantity and replenishment. Potential artificial recharge areas were delineated using landscape and hydrogeologic parameters, Geographic Information System (GIS), and remote sensing. Groundwater models are powerful tools for recharge estimation when transmissivity is known. Proper recharge must be applied to reproduce field-measured heads. The model showed that groundwater levels could decline significantly if there are two drought years in every four years that result in reduced recharge, and groundwater withdrawal is increased by 15%. The effect of such drought is currently uncertain however, because runoff from the basin is unknown. Remote sensing and GIS revealed areas with slopes less than 5%, forest cover, and Normalized Difference Vegetative Index greater than 0.5 that are suitable recharge sites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The region of Ribeirão Preto City located in São Paulo State, southeastern Brazil, is an important sugarcane, soybean and corn producing area. This region is also an important recharge area (Espraiado) for groundwater of the Guarany aquifer, a water supply source for the city and region. It has an intercontinental extension that comprises areas of eight Brazilian states, as well as significant portions of other South American countries like Argentina, Uruguay, and Paraguay, with a total area of approximately 1,200,000 Km2. Due to the high permeability of some soils present in this region, the high mobility of the herbicides and fertilizers applied, and being a recharge area, it is important to investigate the potential transport of applied fertilizers to underlying aquifer. The cultivation sugar cane in this area demands the frequent use of nitrogen as fertilizer. This research was conducted to characterize the potential contamination of groundwater with nitrogen in the recharge area of groundwater. Seven groundwater sample points were selected in the Espraiado stream watershed, during the years of 2005 and 2006. Samples were collected during the months of March, July, and December of each year. Three replications were collected at each site. Groundwater was also collected during the same months from county groundwater wells located throughout the city. The following six wells were studied: Central, Palmares, Portinari, Recreio Internacional, São Sebastião, and São José. Nitrate water samples were analyzed by Cadmium Reduction Method. No significant amount of nitrate was found in the recharge, agricultural, area. However, nitrate levels were detected at concentrations higher than the Maximum Concentration Level (MCL) of 10mg/L in downtown, urban, well located away from agricultural sites with no history of fertilizer or nitrogen application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After the recent prolonged drought conditions in many parts of Australia it is increasingly recognised that many groundwater systems are under stress. Although this is obvious for systems that are utilised for intensive irrigation many other groundwater systems are also impacted.Management strategies are highly variable to non-existent. Policy and regulation are also often inadequate, and are reactive or politically driven. In addition, there is a wide range of opinion by water users and other stakeholders as to what is “reasonable”management practice. These differences are often related to the “value”that is put on the groundwater resource. Opinions vary from “our right to free water”to an awareness that without effective management the resource will be degraded. There is also often misunderstanding of surface water-groundwater linkages, recharge processes, and baseflow to drainage systems.