993 resultados para Artificial Reef
Resumo:
Artificial reefs are used as management tools for coastal fisheries and ecosystems and the knowledge of habitat use and fish movements around them is necessary to understand their performance and improve their design and location. In this study wild specimens of Diplodus sargus were tagged with acoustic tags and their movements were tracked using passive acoustic telemetry. The monitored area enclosed a natural rocky reef, an adjacent artificial reef (AR) and shallower sandy bottoms. Most of the fish were close to full time residents in the monitored area. Results revealed that D. sargus use the natural reef areas on a more frequent basis than the AR. However, excursions to the adjacent AR and sandy bottoms were frequently detected, essentially during daytime. The use of acoustic telemetry allowed a better understanding of the use of artificial reef structures and its adjacent areas by wild D. sargus providing information that is helpful towards the improvement of AR design and location. (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The commercial development of ocean thermal energy conversion (OTEC) operations will involve some environmental perturbations for which there is no precedent experience. The pumping of very large volumes of warm surface water and cold deep water and its subsequent discharge will result in the impingement, entrainment, and redistribution of biota. Additional stresses to biota will be caused by biocide usage and temperature depressions. However, the artificial upwelling of nutrients associated with the pumping of cold deep water, and the artificial reef created by an OTEC plant may have positive effects on the local environment. Although more detailed information is needed to assess the net effect of an OTEC operation on fisheries, certain assumptions and calculations are made supporting the conclusion that the potential risk to fisheries is not significant enough to deter the early development of IDEe. It will be necessary to monitor a commercial-scale plant in order to remove many of the remaining uncertainties. (PDF file contains 39 pages.)
Resumo:
From 1979 to 2000, the site for the dumping of low-level radioactive wastes and an unaffected site in the North-east Atlantic were investigated to determine the biomass data of the benthopelagic nekton and the benthic organisms. The investigation shall demonstrate the influence on the biocoenosis of the so-called "artificial reef effect", caused by dumped waste drums. For sampling benthopelagic and benthic organisms, we used a modified Agassiz trawl, called the Deep-sea Closing Net. With the exception of the “Amperima event” in 1996 – a unique occurrence of a large number of sea-cucumbers – there was no change in the composition of benthopelagic and benthic organisms through the years. The biomass of the benthopelagic nekton was characterized by Macrouridae(rat-tailed fishes) and the main tax on of the benthos was Actiniaria (sea-anemones).
Resumo:
We examined the effect of habitat and shrimp trawl bycatch on the density, size, growth, and mortality of inshore lizardfish (Synodus foetens), a nonexploited species that is among the most widespread and abundant benthic fishes in the north central Gulf of Mexico. Results of quarterly trawl sampling conducted from spring 2004 through spring 2005 revealed that inshore lizardfish are most abundant on sand habitat, but larger fish are more common on shell rubble habitat. There was no significant difference in fish density between habitats exposed to shrimp trawling on the open shelf versus those habitats within a permitted artificial reef zone that served as a de facto no-trawl area; this finding indicates that either inshore lizardfish experienced minimal effects from trawling or, more likely, that fish moved between trawled and nontrawled habitats. Exploitation ratio (bycatch mortality/total morality) estimates derived from catch curve analysis ranged from 0.43 inside the artificial reef zone to 0.55 outside the reef zone, thus indicating that inshore lizardfish are subject to significant fishing mortality in the north central Gulf of Mexico despite the lack of a directed fishery for the species. We infer from this result that effects of shrimp trawl bycatch may be significant at the population level for nonexploited species and that a broader ecosystem-scale examination of bycatch effects is warranted.
Resumo:
Bush park fishing / padal fishing is an indigenous fishing method widely employed in the Ashtamudi estuary of Kerala (south India). An artificial reef made from twigs and leaves of trees is planted in the shallow areas of the estuary. The aim is to harvest fish that find shelter in these structures for the purpose of feeding and breeding. Though the State Department of Fisheries has banned this method of fishing in the inland waters of Kerala, 400 padals are operating in this estuary. About 300 of them are anchored in the western parts of the estuary (west Kayal). Fish are harvested in the padals at monthly intervals almost round the year and this results in the destruction of a sizeable quantity of juveniles and sub-adults of the commercially important fishes, such as Pearl spot and mullets, from the estuary. These padals pose a major threat to the sustainability of the fishery resources of this estuary and, therefore, need to be phased out by providing alternative occupations for the fishermen who are dependant on the padals.
Resumo:
We examined the diets and habitat shift of juvenile red snapper (Lutjanus campechanus) in the northeast Gulf of Mexico. Fish were collected from open sand-mud habitat (little to no relief), and artificial reef habitat (1-m3 concrete or PVC blocks), from June 1993 through December 1994. In 1994, fish settled over open habitat from June to September, as shown by trawl collections, then began shifting to reef habitat — a shift that was almost completed by December as observed by SCUBA visual surveys. Stomachs were examined from 1639 red snapper that ranged in size from 18.0 to 280.0 mm SL. Of these, 850 fish had empty stomachs, and 346 fish from open habitat and 443 fish from reef habitat contained prey. Prey were identified to the lowest possible taxon and quantified by volumetric measurement. Specific volume of particular prey taxa were calculated by dividing prey volume by individual fish weight. Red snapper shifted diets with increasing size. Small red snapper (<60 mm SL) fed mostly on chaetognaths, copepods, shrimp, and squid. Large red snapper (60–280 mm SL) shifted feeding to fish prey, greater amounts of squid and crabs, and continued feeding on shrimp. We compared red snapper diets for overlapping size classes (70–160 mm SL) of fish that were collected from both habitats (Bray-Curtis dissimilarity index and multidimensional scaling analysis). Red snapper diets separated by habitat type rather than fish size for the size ranges that overlapped habitats. These diet shifts were attributed to feeding more on reef prey than on open-water prey. Thus, the shift in habitat shown by juvenile red snapper was reflected in their diet and suggested differential habitat values based not just on predation refuge but food resources as well.
The co-location of offshore windfarms and decapod fisheries in the UK: Constraints and opportunities
Resumo:
The offshore wind sector in the UK is expanding rapidly and is set to occupy significant areas of the coastal zone, making it necessary to explore the potential for co-location with other economic activities. The presence of turbine foundations introduces hard substrates into areas previously dominated by soft sediments, implying that artificial reef effects may occur, with potential benefits for fisheries. This review focuses on the possibilities for locating fisheries for two commercially important decapods, the brown crab Cancer pagurus and the European lobster Homarus gammarus, within offshore wind farms. Existing understanding of habitat use by C pagurus and H. gammarus suggests that turbine foundations have the potential to act as artificial reefs, although the responses of these species to noise and electromagnetic fields are poorly understood. Offshore wind farm monitoring programmes provide very limited information, but do suggest that adult C pagurus associate with turbine foundations, which may also serve as nursery areas. There was insufficient deployment and monitoring of rock armouring to draw conclusions about the association of H. gammarus with offshore wind farm foundations. The limited information currently available demonstrates the need for further research into the ecological and socioeconomic issues surrounding fishery co-location potential.
The co-location of offshore windfarms and decapod fisheries in the UK: Constraints and opportunities
Resumo:
The offshore wind sector in the UK is expanding rapidly and is set to occupy significant areas of the coastal zone, making it necessary to explore the potential for co-location with other economic activities. The presence of turbine foundations introduces hard substrates into areas previously dominated by soft sediments, implying that artificial reef effects may occur, with potential benefits for fisheries. This review focuses on the possibilities for locating fisheries for two commercially important decapods, the brown crab Cancer pagurus and the European lobster Homarus gammarus, within offshore wind farms. Existing understanding of habitat use by C pagurus and H. gammarus suggests that turbine foundations have the potential to act as artificial reefs, although the responses of these species to noise and electromagnetic fields are poorly understood. Offshore wind farm monitoring programmes provide very limited information, but do suggest that adult C pagurus associate with turbine foundations, which may also serve as nursery areas. There was insufficient deployment and monitoring of rock armouring to draw conclusions about the association of H. gammarus with offshore wind farm foundations. The limited information currently available demonstrates the need for further research into the ecological and socioeconomic issues surrounding fishery co-location potential.
Resumo:
Integrated marine planning, which must take into consideration environmental and social impacts, is being introduced widely in Europe, the USA, Australia and elsewhere. Installation of offshore windfarms creates impacts both on local marine ecosystems and the view of the seascape and is one of multiple activities in the marine area that must be addressed by marine planning. The impacts on people's values (and hence welfare) of changes in ecology and amenity that could arise from the installation of a windfarm in the Irish Sea were assessed using a discrete choice experiment administered through an online survey. The ecological changes investigated were: increased species diversity resulting from artificial reef effects, and the effect of electromagnetic fields from subsea cables on marine life; whilst the amenity change was the visibility of offshore turbines from land. Respondents expressed preferences for ecological improvements but had less clear preferences regarding the height and visibility of the turbines. In particular distance decay effects were observed with respondents further away from the coast being less concerned about visual impact created by offshore turbines. Understanding ecological and amenity impacts and how they are valued by people can support the decisions made within marine planning and licensing.
Resumo:
Tese de dout., Ciências do Mar, da Terra e do Ambiente (Ecologia Marinha), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2012
Resumo:
Máster en Gestión Sostenible de Recursos Pesqueros
Resumo:
Due to their low metabolism and apparent poor ion regulation ability, sea urchins could be particularly sensitive to ocean acidification resulting from increased dissolution of atmospheric carbon dioxide. Therefore, we evaluated the acid-base regulation ability of the coral reef sea urchin Echinometra mathaei and the impact of decreased pH on its growth and respiration activity. The study was conducted in two identical artificial reef mesocosms during seven weeks. Experimental tanks were maintained respectively at mean pHT 7.7 and 8.05 (with field-like night and day variations). The major physico-chemical parameters were identical, only pCO2 and pHT differed. Results indicate that E. mathaei can regulate the pH of its coelomic fluid in the considered range of pH, allowing a sustainable growth and ensuring an unaffected respiratory metabolism, at least at short term.
Resumo:
We evaluated the effectiveness of wooden artificial reefs (ARs) as fish habitat. Three types of ARs, made of cedar logs, broadleaf tree logs, and PVC pipes, respectively, were deployed in triplicate at 8-m depth off Maizuru, Kyoto Prefecture, Sea of Japan, in May 2004. Fish assemblages associated with each of the nine ARs were observed by using SCUBA twice a month for four years. Fish assemblages in the adjacent habitat were also monitored for two years before and four years after reef deployment. In the surveyed areas (ca. 10 m2) associated with each of the cedar, broadleaf, and PVC ARs, the average number of fish species was 4.14, 3.49, and 3.00, and the average number of individuals was 40.7, 27.9, and 20.3, respectively. The estimated biomass was also more greater when associated with the cedar ARs than with other ARs. Visual censuses of the habitat adjacent to the ARs revealed that the number of fish species and the density of individuals were not affected by the deployment of the ARs. Our results support the superiority of cedar as an AR material and indicate that deployment of wooden ARs causes no reduction of fish abundance in adjacent natural reefs.