917 resultados para Art Computer network resources
Resumo:
The characteristics of service independence and flexibility of ATM networks make the control problems of such networks very critical. One of the main challenges in ATM networks is to design traffic control mechanisms that enable both economically efficient use of the network resources and desired quality of service to higher layer applications. Window flow control mechanisms of traditional packet switched networks are not well suited to real time services, at the speeds envisaged for the future networks. In this work, the utilisation of the Probability of Congestion (PC) as a bandwidth decision parameter is presented. The validity of PC utilisation is compared with QOS parameters in buffer-less environments when only the cell loss ratio (CLR) parameter is relevant. The convolution algorithm is a good solution for CAC in ATM networks with small buffers. If the source characteristics are known, the actual CLR can be very well estimated. Furthermore, this estimation is always conservative, allowing the retention of the network performance guarantees. Several experiments have been carried out and investigated to explain the deviation between the proposed method and the simulation. Time parameters for burst length and different buffer sizes have been considered. Experiments to confine the limits of the burst length with respect to the buffer size conclude that a minimum buffer size is necessary to achieve adequate cell contention. Note that propagation delay is a no dismiss limit for long distance and interactive communications, then small buffer must be used in order to minimise delay. Under previous premises, the convolution approach is the most accurate method used in bandwidth allocation. This method gives enough accuracy in both homogeneous and heterogeneous networks. But, the convolution approach has a considerable computation cost and a high number of accumulated calculations. To overcome this drawbacks, a new method of evaluation is analysed: the Enhanced Convolution Approach (ECA). In ECA, traffic is grouped in classes of identical parameters. By using the multinomial distribution function instead of the formula-based convolution, a partial state corresponding to each class of traffic is obtained. Finally, the global state probabilities are evaluated by multi-convolution of the partial results. This method avoids accumulated calculations and saves storage requirements, specially in complex scenarios. Sorting is the dominant factor for the formula-based convolution, whereas cost evaluation is the dominant factor for the enhanced convolution. A set of cut-off mechanisms are introduced to reduce the complexity of the ECA evaluation. The ECA also computes the CLR for each j-class of traffic (CLRj), an expression for the CLRj evaluation is also presented. We can conclude that by combining the ECA method with cut-off mechanisms, utilisation of ECA in real-time CAC environments as a single level scheme is always possible.
Resumo:
This paper presents an automatic method to detect and classify weathered aggregates by assessing changes of colors and textures. The method allows the extraction of aggregate features from images and the automatic classification of them based on surface characteristics. The concept of entropy is used to extract features from digital images. An analysis of the use of this concept is presented and two classification approaches, based on neural networks architectures, are proposed. The classification performance of the proposed approaches is compared to the results obtained by other algorithms (commonly considered for classification purposes). The obtained results confirm that the presented method strongly supports the detection of weathered aggregates.
Resumo:
As far back as I can remember, I have always been interested in studio art. Whether it be painting, drawing, printmaking, or photography, it has consistently been a part of my life. Upon enrolling in Colby, I became interested in computers and decided to major my undergraduate college career in Computer Science. Not forgetting past interests, I continued my studio art education, taking several classes within the Art department. In due time, I began combining interests and began studying Computer Graphics and Design. With limited resources in this field at Colby, the majority of my computer graphic education and experience has been done on my own time apart from regular classroom work. As time progressed, so did my interests. Starting with simple image manipulation of digitally scanned photographs, I moved on to Web Page design, eventually leading to Desktop Publishing. Ultimately, I wanted to take a step further and expand my overall computer graphic knowledge by learning 3D modeling and animation. With even fewer resources in 3D animation at Colby, I perceived having trouble finding the information and tools I would need to gain the necessary skills for this new field. The Senior Scholars program gave me the opponunity to find and acquire the necessary tools to pursue my interest. This program also allowed me to devote the proper amount of time required for learning these new tools.
Resumo:
Internal and external computer network attacks or security threats occur according to standards and follow a set of subsequent steps, allowing to establish profiles or patterns. This well-known behavior is the basis of signature analysis intrusion detection systems. This work presents a new attack signature model to be applied on network-based intrusion detection systems engines. The AISF (ACME! Intrusion Signature Format) model is built upon XML technology and works on intrusion signatures handling and analysis, from storage to manipulation. Using this new model, the process of storing and analyzing information about intrusion signatures for further use by an IDS become a less difficult and standardized process.
Resumo:
Recently, considerable research work have been conducted towards finding fast and accurate pattern classifiers for training Intrusion Detection Systems (IDSs). This paper proposes using the so called Fuzzy ARTMAT classifier to detect intrusions in computer network. Our investigation shows, through simulations, how efficient such a classifier can be when used as the learning mechanism of a typical IDS. The promising evaluation results in terms of both detection accuracy and training duration indicate that the Fuzzy ARTMAP is indeed viable for this sort of application.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Comunicação - FAAC
Resumo:
A capacidade de processamento das instituições de pesquisa vem crescendo significativamente à medida que processadores e estações de trabalho cada vez mais poderosos vão surgindo no mercado. Considerando a melhoria de desempenho na área de redes de computadores e visando suprir a demanda por processamento cada vez maior, surgiu a ideia de utilizar computadores independentes conectados em rede como plataforma para execução de aplicações paralelas, originando assim a área de computação em grade. Em uma rede que se encontra sob um mesmo domínio administrativo, é comum que exista o compartilhamento de recursos como discos, impressoras, etc. Mas quando a rede ultrapassa um domínio administrativo, este compartilhamento se torna muito limitado. A finalidade das grades de computação é permitir compartilhamento de recursos mesmo que estes estejam espalhados por diversos domínios administrativos. Esta dissertação propõe uma arquitetura para o estabelecimento dinâmico de conexões multidomínio que faz uso da comutação de rajadas ópticas (OBS – Optical Burst Switching) utilizando um plano de controle GMPLS (Generalized Multiprotocol Label Switching). A arquitetura baseia-se no armazenamento de informações sobre recursos de grade de sistemas autônomos (AS -Autonomous Systems) distintos em um componente chamado Servidor GOBS Raiz (Grid OBS) e na utilização do roteamento explícito para reservar os recursos ao longo de uma rota que satisfaça as restrições de desempenho de uma aplicação. A validação da proposta é feita através de simulações que mostram que a arquitetura é capaz de garantir níveis de desempenho diferenciados de acordo com a classe da aplicação e proporciona uma melhor utilização dos recursos de rede e de computação.
Resumo:
The rapid development of Information and Communication Technologies - TIC, coupled with the advancement of the global Internet computer network have framed new concepts and definitions such as virtual reality, immersive environments, webmuseums, digital museums, electronic art, cyber art, among other terminologies that are becoming more and more common and are present in everyday Web users. To better understand the terminologies used to describe museum in the virtual environment, we present a summarized table of terms such as webmuseum, virtual museum, digital museum and their derivatives in order to define the elements that differentiate or resemble them. We used the bibliographic descriptive method for identifying the concepts presented by some expert authors in the field. In conclusion, we recommend the use of the term webmuseum for museums in cyberspace as the most appropriate and we define the concept, comprehending its meaning and characteristics.
Resumo:
Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength-division-multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated-protection and shared-protection schemes are considered. Given network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures, such as fiber cut and duct cut, we consider the general shared-risklink- group (SRLG) diverse routing constraints. We first resort to the integer-linear-programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA), and tabu-search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model, respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu-search (TS) method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.
Resumo:
Wireless LAN technology, despite the numerous advantages it has over competing technologies, has not seen widespread deployment. A primary reason for markets not adopting this technology is its failure to provide adequate security. Data that is sent over wireless links can be compromised with utmost ease. In this project, we propose a distributed agent based intrusion detection and response system for wireless LANs that can detect unauthorized wireless elements like access points, wireless clients that are in promiscuous mode etc. The system reacts to intrusions by either notifying the concerned personnel, in case of rogue access points and promiscuous nodes, or by blocking unauthorized users from accessing the network resources.
Resumo:
Wavelength-routed networks (WRN) are very promising candidates for next-generation Internet and telecommunication backbones. In such a network, optical-layer protection is of paramount importance due to the risk of losing large amounts of data under a failure. To protect the network against this risk, service providers usually provide a pair of risk-independent working and protection paths for each optical connection. However, the investment made for the optical-layer protection increases network cost. To reduce the capital expenditure, service providers need to efficiently utilize their network resources. Among all the existing approaches, shared-path protection has proven to be practical and cost-efficient [1]. In shared-path protection, several protection paths can share a wavelength on a fiber link if their working paths are risk-independent. In real-world networks, provisioning is usually implemented without the knowledge of future network resource utilization status. As the network changes with the addition and deletion of connections, the network utilization will become sub-optimal. Reconfiguration, which is referred to as the method of re-provisioning the existing connections, is an attractive solution to fill in the gap between the current network utilization and its optimal value [2]. In this paper, we propose a new shared-protection-path reconfiguration approach. Unlike some of previous reconfiguration approaches that alter the working paths, our approach only changes protection paths, and hence does not interfere with the ongoing services on the working paths, and is therefore risk-free. Previous studies have verified the benefits arising from the reconfiguration of existing connections [2] [3] [4]. Most of them are aimed at minimizing the total used wavelength-links or ports. However, this objective does not directly relate to cost saving because minimizing the total network resource consumption does not necessarily maximize the capability of accommodating future connections. As a result, service providers may still need to pay for early network upgrades. Alternatively, our proposed shared-protection-path reconfiguration approach is based on a load-balancing objective, which minimizes the network load distribution vector (LDV, see Section 2). This new objective is designed to postpone network upgrades, thus bringing extra cost savings to service providers. In other words, by using the new objective, service providers can establish as many connections as possible before network upgrades, resulting in increased revenue. We develop a heuristic load-balancing (LB) reconfiguration approach based on this new objective and compare its performance with an approach previously introduced in [2] and [4], whose objective is minimizing the total network resource consumption.
Resumo:
Lightpath scheduling is an important capability in next-generation wavelength-division multiplexing (WDM) optical networks to reserve resources in advance for a specified time period while provisioning end-to-end lightpaths. In a dynamic environment, the end user requests for dynamic scheduled lightpath demands (D-SLDs) need to be serviced without the knowledge of future requests. Even though the starting time of the request may be hours or days from the current time, the end-user however expects a quick response as to whether the request could be satisfied. We propose a two-phase approach to dynamically schedule and provision D-SLDs. In the first phase, termed the deterministic lightpath scheduling phase, upon arrival of a lightpath request, the network control plane schedules a path with guaranteed resources so that the user can get a quick response with a deterministic lightpath schedule. In the second phase, termed the lightpath re-optimization phase, we re-provision some already scheduled lightpaths to re-optimize for improving network performance. We study two reoptimization scenarios to reallocate network resources while maintaining the existing lightpath schedules. Experimental results show that our proposed two-phase dynamic lightpath scheduling approach can greatly reduce network blocking.
Resumo:
Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength division multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated protection and shared protection schemes are considered. Given the network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures such as fiber cut and duct cut, we consider the general shared risk link group (SRLG) diverse routing constraints. We first resort to the integer linear programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA) and tabu search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu search method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.
Resumo:
We propose an efficient scheduling scheme that optimizes advance-reserved lightpath services in reconfigurable WDM networks. A re-optimization approach is devised to reallocate network resources for dynamic service demands while keeping determined schedule unchanged.