986 resultados para Arsenic-sensitivity
Resumo:
Load modeling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is through parametric sensitivity analysis. Load ranking provides an effective measure of such impact. Traditionally, load ranking is based on either static or dynamic load model alone. In this paper, composite load model based load ranking framework is proposed. It enables comprehensive investigation into load modeling impacts on system stability considering the dynamic interactions between load and system dynamics. The impact of load composition on the overall sensitivity and therefore on ranking of the load is also investigated. Dynamic simulations are performed to further elucidate the results obtained through sensitivity based load ranking approach.
Resumo:
Power system operation and planning are facing increasing uncertainties especially with the deregulation process and increasing demand for power. Probabilistic power system stability assessment and probabilistic power system planning have been identified by EPRI as one of the important trends in power system operations and planning. Probabilistic small signal stability assessment studies the impact of system parameter uncertainties on system small disturbance stability characteristics. Researches in this area have covered many uncertainties factors such as controller parameter uncertainties and generation uncertainties. One of the most important factors in power system stability assessment is load dynamics. In this paper, composite load model is used to consider the uncertainties from load parameter uncertainties impact on system small signal stability characteristics. The results provide useful insight into the significant stability impact brought to the system by load dynamics. They can be used to help system operators in system operation and planning analysis.
High-sensitivity fiber Bragg grating temperature sensor at high temperature [一种高温下高灵敏光纤光栅温度传感器的制作方法]
Resumo:
A method of making full use of the durable strain which fiber Bragg grating (FBG) can undertake is presented, which hugely improves the sensitivities of FBG temperature sensors at high temperature. When a sensor is manufactured at room temperature, its FBG should be given a pre-relaxing length according to the temperature it is asked to measure; once the temperature rise to the asked one, its FBG starts to be stretched and it starts to work with high sensitivity. The relationship between the pre-relaxing length and the working temperature is analyzed. In experiments, when the pre-relaxing lengths are 0.2mm、0.5mm、0.6mm, the working temperatures rise 25℃、50℃、61℃, respectively, and the sensitivities are almost the same (675pm/℃). The facts that the experimental results agree well with the theoretical analyses verify this method’s validity.
Resumo:
As a novel sensing element, fiber Bragg grating (FBG) is sensitive to both temperature and strain. Basing on this character, high sensitivity FBG temperature sensor can be made. However, as a result of the strain limit of the fiber, the temperature range it can endure is quite narrow. This drawback limits its application and complicates its storage and transport. We design and manufacture a FBG temperature sensor with tunable sensitivity. By tuning its sensitivity, its temperature range is changed, which enlarges its application field, solves the problem of storage and transport, and brighten the future of FBG in temperature measurement. In experiment, by changing the fixing position of the bimetal we tuned the sensitivity of the high sensitivity FBG sensor to different values (-47 pm/℃,-97.7 pm/℃,-153.3 pm/℃).
Resumo:
"Seventeen peer-reviewed papers cover the latest research on the ignition and combustion of metals and non-metals, oxygen compatibility of components and systems, analysis of ignition and combustion, failure analysis and safety. It includes aerospace, military, scuba diving, and industrial oxygen applications. Topics cover: • Development of safe oxygen systems • Ignition mechanisms within oxygen systems and how to avoid them • Specific hazards that exist with the oxygen mixture breathed by divers in the scuba industry • Issues related to oxygen system level safety • Issues related to oxygen safety in breathing systems • Detailed investigations and discussions related to the burn curves that have been generated for metals that are burning in a standard test fixture This new publication is a valuable resource for professionals in the air separation industries, oxygen manufacturers, manufacturers of materials intended for oxygen service, and users of oxygen and oxygen-enriched atmospheres, including aerospace, medical, industrial gases, chemical processing, steel and metals refining, as well as to military, commercial or recreational diving."--- publisher website
Resumo:
The mineral tooeleite Fe6(AsO3)4SO4(OH)4�4H2O is secondary ferric arsenite sulphate mineral which has environmental significance for arsenic remediation because of its high stability in the regolith. The mineral has been studied by X-ray diffraction (XRD), infrared (IR) and Raman spectroscopy. The XRD result indicates tooeleite can form more crystalline solids in an acid environment than in an alkaline environment. Infrared spectroscopy identifies moderately intense band at 773 cm�1 assigned to AsO3� 3 symmetric stretching vibration. Raman spectroscopy identifies three bands at 803, 758 and 661 cm�1 assigned to the symmetric and antisymmetric stretching vibrations of AsO3� 3 and As-OH stretching vibration respectively. In addition, the infrared bands observed at 1116, 1040, 1090, 981 and 616 cm�1, are assigned to the m3, m1 and m4 modes of SO2� 4 . The same bands are observed at 1287, 1085, 983 and 604 cm�1 in the Raman spectrum. As3d band at binding energy of 44.05 eV in XPS confirms arsenic valence of tooeleite is +3. These characteristic bands in the IR and Raman spectra provide useful basis for identifying the mineral tooeleite.
Resumo:
The effects of small changes in flight-path parameters (primary and secondary flight paths, detector angles), and of displacement of the sample along the beam axis away from its ideal position, are examined for an inelastic time-of-flight (TOF) neutron spectrometer, emphasising the deep-inelastic regime. The aim was to develop a rational basis for deciding what measured shifts in the positions of spectral peaks could be regarded as reliable in the light of the uncertainties in the calibrated flight-path parameters. Uncertainty in the length of the primary or secondary flight path has the least effect on the positions of the peaks of H, D and He, which are dominated by the accuracy of the calibration of the detector angles. This aspect of the calibration of a TOF spectrometer therefore demands close attention to achieve reliable outcomes where the position of the peaks is of significant scientific interest and is discussed in detail. The corresponding sensitivities of the position of peak of the Compton profile, J(y), to flight-path parameters and sample position are also examined, focusing on the comparability across experiments of results for H, D and He. We show that positioning the sample to within a few mm of the ideal position is required to ensure good comparability between experiments if data from detectors at high forward angles are to be reliably interpreted.
Resumo:
Ethanol sensing performance of gas sensors made of Fe doped and Fe implanted nanostructured WO3 thin films prepared by a thermal evaporation technique was investigated. Three different types of nanostructured thin films, namely, pure WO3 thin films, iron-doped WO3 thin films by co-evaporation and Fe-implanted WO3 thin films have been synthesized. All the thin films have a film thickness of 300 nm. The physical, chemical and electronic properties of these films have been optimized by annealing heat treatment at 300ºC and 400ºC for 2 hours in air. Various analytical techniques were employed to characterize these films. Atomic Force Microscopy and Transmission Electron Microscopy revealed a very small grain size of the order 5-10 nm in as-deposited WO3 films, and annealing at 300ºC or 400ºC did not result in any significant change in grain size. This study has demonstrated enhanced sensing properties of WO3 thin film sensors towards ethanol at lower operating temperature, which was achieved by optimizing the physical, chemical and electronic properties of the WO3 film through Fe doping and annealing.
Resumo:
Quantitative imaging methods to analyze cell migration assays are not standardized. Here we present a suite of two–dimensional barrier assays describing the collective spreading of an initially–confined population of 3T3 fibroblast cells. To quantify the motility rate we apply two different automatic image detection methods to locate the position of the leading edge of the spreading population after 24, 48 and 72 hours. These results are compared with a manual edge detection method where we systematically vary the detection threshold. Our results indicate that the observed spreading rates are very sensitive to the choice of image analysis tools and we show that a standard measure of cell migration can vary by as much as 25% for the same experimental images depending on the details of the image analysis tools. Our results imply that it is very difficult, if not impossible, to meaningfully compare previously published measures of cell migration since previous results have been obtained using different image analysis techniques and the details of these techniques are not always reported. Using a mathematical model, we provide a physical interpretation of our edge detection results. The physical interpretation is important since edge detection algorithms alone do not specify any physical measure, or physical definition, of the leading edge of the spreading population. Our modeling indicates that variations in the image threshold parameter correspond to a consistent variation in the local cell density. This means that varying the threshold parameter is equivalent to varying the location of the leading edge in the range of approximately 1–5% of the maximum cell density.
Resumo:
Successive alkalinity producing systems (SAPSs) are widely used for treating acid mine drainage (AMD) and alleviating clogging commonly occurring in limestone systems due to an amorphous ferric precipitate. In this study, iron dust, bone char, micrite and their admixtures were used to treat arseniccontaining AMD. A particular interest was devoted to arsenic removal performance, mineralogical constraints on arsenic retention ability and permeability variation during column experiment for 140 days. The results showed that the sequence of the arsenic removal capacity was as follows: bone char > micrite > iron dust. The combination of 20% v/v iron dust and 80% v/v bone char/micrite columns can achieve better hydraulic conductivity and phosphorus-retention capacity than single micrite and bone char columns. The addition of iron dust created reductive environment and resulted in the transformation of coating material from colloidal phase to secondary mineral phase, such as green rust and phosphoerrite, which obviously ameliorates hydraulic conductivity of systems. The sequential extraction experiments indicated that the stable fractions of arsenic in columns were enhanced with help of iron dust compared to single bone char and micrite columns. A combination of iron dust and micrite/bone char represented a potential SAPS for treating As-containing AMD.
Resumo:
The first fiber Bragg grating (FBG) accelerometer using direct transverse forces is demonstrated by fixing the FBG by its two ends and placing a transversely moving inertial object at its middle. It is very sensitive because a lightly stretched FBG is more sensitive to transverse forces than axial forces. Its resonant frequency and static sensitivity are analyzed by the classic spring-mass theory, assuming the axial force changes little. The experiments show that the theory can be modified for cases where the assumption does not hold. The resonant frequency can be modified by a linear relationship experimentally achieved, and the static sensitivity by an alternative method proposed. The principles of the over-range protection and low cross axial sensitivity are achieved by limiting the movement of the FBG and were validated experimentally. The sensitivities 1.333 and 0.634 nm/g were experimentally achieved by 5.29 and 2.83 gram inertial objects at 10 Hz from 0.1 to 0.4 g (g = 9.8 m/s 2), respectively, and their resonant frequencies were around 25 Hz. Their theoretical static sensitivities and resonant frequencies found by the modifications are 1.188 nm/g and 26.81 Hz for the 5.29 gram one and 0.784 nm/g and 29.04 Hz for the 2.83 gram one, respectively.
Resumo:
Objective: To calculate pooled risk estimates of the association between pigmentary characteristics and basal cell carcinoma (BCC) of the skin. Methods: We searched three electronic databases and reviewed the reference lists of the retrieved articles until July 2012 to identify eligible epidemiologic studies. Eligible studies were those published in between 1965 and July 2012 that permitted quantitative assessment of the association between histologically-confirmed BCC and any of the following characteristics: hair colour, eye colour, skin colour, skin phototype, tanning and burning ability, and presence of freckling or melanocytic nevi. We included 29 studies from 2236 initially identified. We calculated summary odds ratios (ORs) using weighted averages of the log OR, using random effects models. Results: We found strongest associations with red hair (OR 2.02; 95% CI: 1.68, 2.44), fair skin colour (OR 2.11; 95% CI: 1.56, 2.86), and having skin that burns and never tans (OR 2.03; 95% CI: 1.73, 2.38). All other factors had weaker but positive associations with BCC, with the exception of freckling of the face in adulthood which showed no association. Conclusions: Although most studies report risk estimates that are in the same direction, there is significant heterogeneity in the size of the estimates. The associations were quite modest and remarkably similar, with ORs between about 1.5 and 2.5 for the highest risk level for each factor. Given the public health impact of BCC, this meta-analysis will make a valuable contribution to our understanding of BCC.
Resumo:
The appearance of Plasmodium falciparum parasites with decreased in vivo sensitivity but no measurable in vitro resistance to artemisinin has raised the urgent need to characterize the artemisinin resistance phenotype. Changes in the temporary growth arrest (dormancy) profile of parasites may be one aspect of this phenotype. In this study, we investigated the link between dormancy and resistance, using artelinic acid (AL)-resistant parasites. Our results demonstrate that the AL resistance phenotype has (i) decreased sensitivity of mature-stage parasites, (ii) decreased sensitivity of the ring stage to the induction of dormancy, and (iii) a faster recovery from dormancy.
Resumo:
"To the Editor: Indigenous people face challenges that may make them more sensitive to extreme temperatures. These include poor health, inadequate infrastructure, and poverty.1 Few studies have examined the effects of extreme temperatures on Indigenous people2 or have considered the possible role of body mass in sensitivity to extreme temperatures..."
Resumo:
The concept of cultural sensitivity is located within the tradition of anthropology and the history of colonisation and immigration in Australian society. This history provides a basis for examining the largely uncritical introduction of cultural considerations to the discipline of nursing. This paper argues that contemporary understandings of multiculturalism in nursing and health care policy tend to obscure, ignore and thus perpetuate notions of racial superiority. Recent works in transcultural nursing are med to illustrate the way in which ahistorical and therefore quite arbitrary traits are attributed to particular cultural groups. This perspective, given legitimacy in terms of cultural sensitivity, encourages political neutrality and thereby avoids questioning the discriminatory practices embedded in fundamental social relations.