964 resultados para Aromatase-deficient Mice


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cathepsin K is a recently identified lysosomal cysteine proteinase. It is abundant in osteoclasts, where it is believed to play a vital role in the resorption and remodeling of bone. Pycnodysostosis is a rare inherited osteochondrodysplasia that is caused by mutations of the cathepsin-K gene, characterized by osteosclerosis, short stature, and acroosteolysis of the distal phalanges. With a view to delineating the role of cathepsin K in bone resorption, we generated mice with a targeted disruption of this proteinase. Cathepsin-K-deficient mice survive and are fertile, but display an osteopetrotic phenotype with excessive trabeculation of the bone-marrow space. Cathepsin-K-deficient osteoclasts manifested a modified ultrastructural appearance: their resorptive surface was poorly defined with a broad demineralized matrix fringe containing undigested fine collagen fibrils; their ruffled borders lacked crystal-like inclusions, and they were devoid of collagen-fibril-containing cytoplasmic vacuoles. Assaying the resorptive activity of cathepsin-K-deficient osteoclasts in vitro revealed this function to be severely impaired, which supports the contention that cathepsin K is of major importance in bone remodeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunological functions were analyzed in mice lacking granulocyte/macrophage colony-stimulating factor (GM-CSF). The response of splenic T cells to allo-antigens, anti-mouse CD3 mAb, interleukin 2 (IL-2), or concanavalin A was comparable in GM-CSF +/+ and GM-CSF −/− mice. To investigate the responses of CD8+ and CD4+ T cells against exogenous antigens, mice were immunized with ovalbumin peptide or with keyhole limpet hemocyanin (KLH). Cytotoxic CD8+ T cells with specificity for ovalbumin peptide could not be induced in GM-CSF −/− mice. After immunization with KLH, there was a delay in IgG generation, particularly IgG2a, in GM-CSF −/− mice. Purified CD4+ T cells from GM-CSF −/− mice immunized with KLH showed impaired proliferative responses and produced low amounts of interferon-γ (IFN-γ) and IL-4 when KLH-pulsed B cells or spleen cells were used as antigen presenting cells (APC). When enriched dendritic cells (DC) were used as APC, CD4+ T cells from GM-CSF −/− mice proliferated as well as those from GM-CSF +/+ mice and produced high amounts of IFN-γ and IL-4. To analyze the rescue effect of DC on CD4+ T cells, supernatants from (i) CD4+ T cells cultured with KLH-pulsed DC or (ii) DC cultured with recombinant GM-CSF were transferred to cultures of CD4+ T cells and KLH-pulsed spleen cells from GM-CSF −/− mice. Supernatants from both DC sources contained a factor or factors that restored proliferative responses and IFN-γ production of CD4+ T cells from GM-CSF −/− mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ataxia telangiectasia (AT) is an autosomal recessive disorder characterized by growth retardation, cerebellar ataxia, oculocutaneous telangiectasias, and a high incidence of lymphomas and leukemias. In addition, AT patients are sensitive to ionizing radiation. Atm-deficient mice recapitulate most of the AT phenotype. p21cip1/waf1 (p21 hereafter), an inhibitor of cyclin-dependent kinases, has been implicated in cellular senescence and response to γ-radiation-induced DNA damage. To study the role of p21 in ATM-mediated signal transduction pathways, we examined the combined effect of the genetic loss of atm and p21 on growth control, radiation sensitivity, and tumorigenesis. As might have been expected, our data provide evidence that p21 modifies the in vitro senescent response seen in AT fibroblasts. Further, it is a downstream effector of ATM-mediated growth control. In addition, however, we find that loss of p21 in the context of an atm-deficient mouse leads to a delay in thymic lymphomagenesis and an increase in acute radiation sensitivity in vivo (the latter principally because of effects on the gut epithelium). Modification of these two crucial aspects of the ATM phenotype can be related to an apparent increase in spontaneous apoptosis seen in tumor cells and in the irradiated intestinal epithelium of mice doubly null for atm and p21. Thus, loss of p21 seems to contribute to tumor suppression by a mechanism that operates via a sensitized apoptotic response. These results have implications for cancer therapy in general and AT patients in particular.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presenilin 1 (PS1) expression is repressed by the p53 tumor suppressor. As shown herein, wild-type PS1 is an effective antiapoptotic molecule capable of significantly inhibiting p53-dependent and p53-independent cell death. We analyzed, at the functional and molecular levels, the brains of p53 knockout mice. Surprisingly, we found that lack of p53 expression induces apoptotic brain lesions, accompanied by learning deficiency and behavioral alterations. p53-deficient mice show an unexpected overexpression of p21waf1 with subsequent down-regulation of PS1 in their brains. This process is progressive and age-dependent. These data indicate that the p53 pathway, besides affecting tumor suppression, may play a major role in regulating neurobehavioral function and cell survival in the brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metachromatic leukodystrophy is a lysosomal sphingolipid storage disorder caused by the deficiency of arylsulfatase A. The disease is characterized by progressive demyelination, causing various neurologic symptoms. Since no naturally occurring animal model of the disease is available, we have generated arylsulfatase A-deficient mice. Deficient animals store the sphingolipid cerebroside-3-sulfate in various neuronal and nonneuronal tissues. The storage pattern is comparable to that of affected humans, but gross defects of white matter were not observed up to the age of 2 years. A reduction of axonal cross-sectional area and an astrogliosis were observed in 1-year-old mice; activation of microglia started at 1 year and was generalized at 2 years. Purkinje cell dendrites show an altered morphology. In the acoustic ganglion numbers of neurons and myelinated fibers are severely decreased, which is accompanied by a loss of brainstem auditory-evoked potentials. Neurologic examination reveals significant impairment of neuromotor coordination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vivo, G protein-coupled receptors (GPCR) for neurotransmitters undergo complex intracellular trafficking that contribute to regulate their abundance at the cell surface. Here, we report a previously undescribed alteration in the subcellular localization of D1 dopamine receptor (D1R) that occurs in vivo in striatal dopaminoceptive neurons in response to chronic and constitutive hyperdopaminergia. Indeed, in mice lacking the dopamine transporter, D1R is in abnormally low abundance at the plasma membrane of cell bodies and dendrites and is largely accumulated in rough endoplasmic reticulum and Golgi apparatus. Decrease of striatal extracellular dopamine concentration with 6-hydroxydopamine (6- OHDA) in heterozygous mice restores delivery of the receptor from the cytoplasm to the plasma membrane in cell bodies. These results demonstrate that, in vivo, in the central nervous system, the storage in cytoplasmic compartments involved in synthesis and the membrane delivery contribute to regulate GPCR availability and abundance at the surface of the neurons under control of the neurotransmitter tone. Such regulation may contribute to modulate receptivity of neurons to their endogenous ligands and related exogenous drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IgG antibodies can suppress more than 99% of the antibody response against the antigen to which they bind. This is used clinically to prevent rhesus-negative (Rh−) women from becoming immunized against Rh+ erythrocytes from their fetuses. The suppressive mechanism is poorly understood, but it has been proposed that IgG/erythrocyte complexes bind to the inhibitory Fc receptor for IgG (FcγRIIB) on the B cell surface, thereby triggering negative signals that turn off the B cell. We show that IgG induces the same degree of suppression of the response to sheep erythrocytes in animals lacking the known IgG-binding receptors FcγRIIB, FcγRI + III, FcγRI + IIB + III, and FcRn (the neonatal Fc receptor) as in wild-type animals. Reinvestigation of the ability of F(ab′)2 fragments to suppress antibody responses demonstrated that they were nearly as efficient as intact IgG. In addition, monoclonal IgE also was shown to be suppressive. These findings suggest that IgG inhibits antibody responses through Fc-independent mechanisms, most likely by masking of antigenic epitopes, thereby preventing B cells from binding and responding to antigen. In agreement with this, we show that T cell priming is not abolished by passively administered IgG. The results have implications for the understanding of in vivo regulation of antibody responses and Rh prophylaxis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A physiological examination of mice harboring a null allele at the aryl hydrocarbon (Ah) locus revealed that the encoded aryl hydrocarbon receptor plays a role in the resolution of fetal vascular structures during development. Although the aryl hydrocarbon receptor is more commonly studied for its role in regulating xenobiotic metabolism and dioxin toxicity, a developmental role of this protein is supported by the observation that Ah null mice display smaller livers, reduced fecundity, and decreased body weights. Upon investigating the liver phenotype, we found that the decrease in liver size is directly related to a reduction in hepatocyte size. We also found that smaller hepatocyte size is the result of massive portosystemic shunting in null animals. Colloidal carbon uptake and microsphere perfusion studies indicated that 56% of portal blood flow bypasses the liver sinusoids. Latex corrosion casts and angiography demonstrated that shunting is consistent with the existence of a patent ductus venosus in adult animals. Importantly, fetal vascular structures were also observed at other sites. Intravital microscopy demonstrated an immature sinusoidal architecture in the liver and persistent hyaloid arteries in the eyes of adult Ah null mice, whereas corrosion casting experiments described aberrations in kidney vascular patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostaglandins formed by cyclooxygenase-1 (COX-1) or COX-2 produce hyperalgesia in sensory nerve endings. To assess the relative roles of the two enzymes in pain processing, we compared responses of COX-1- or COX-2-deficient homozygous and heterozygous mice with wild-type controls in the hot plate and stretching tests for analgesia. Preliminary observational studies determined that there were no differences in gross parameters of behavior between the different groups. Surprisingly, on the hot plate (55°C), the COX-1-deficient heterozygous groups showed less nociception, because mean reaction time was longer than that for controls. All other groups showed similar reaction times. In the stretching test, there was less nociception in COX-1-null and COX-1-deficient heterozygotes and also, unexpectedly, in female COX-2-deficient heterozygotes, as shown by a decreased number of writhes. Measurements of mRNA levels by reverse transcription–PCR demonstrated a compensatory increase of COX-1 mRNA in spinal cords of COX-2-null mice but no increase in COX-2 mRNA in spinal cords of COX-1-null animals. Thus, compensation for the absence of COX-1 may not involve increased expression of COX-2, whereas up-regulation of COX-1 in the spinal cord may compensate for the absence of COX-2. The longer reaction times on the hot plate of COX-1-deficient heterozygotes are difficult to explain, because nonsteroid anti-inflammatory drugs have no analgesic action in this test. Reduction in the number of writhes of the COX-1-null and COX-1-deficient heterozygotes may be due to low levels of COX-1 at the site of stimulation with acetic acid. Thus, prostaglandins made by COX-1 mainly are involved in pain transmission in the stretching test in both male and female mice, whereas those made by COX-2 also may play a role in the stretching response in female mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ATP-sensitive K+ (KATP) channels regulate many cellular functions by linking cell metabolism to membrane potential. We have generated KATP channel-deficient mice by genetic disruption of Kir6.2, which forms the K+ ion-selective pore of the channel. The homozygous mice (Kir6.2−/−) lack KATP channel activity. Although the resting membrane potential and basal intracellular calcium concentrations ([Ca2+]i) of pancreatic beta cells in Kir6.2−/− are significantly higher than those in control mice (Kir6.2+/+), neither glucose at high concentrations nor the sulfonylurea tolbutamide elicits a rise in [Ca2+]i, and no significant insulin secretion in response to either glucose or tolbutamide is found in Kir6.2−/−, as assessed by perifusion and batch incubation of pancreatic islets. Despite the defect in glucose-induced insulin secretion, Kir6.2−/− show only mild impairment in glucose tolerance. The glucose-lowering effect of insulin, as assessed by an insulin tolerance test, is increased significantly in Kir6.2−/−, which could protect Kir6.2−/− from developing hyperglycemia. Our data indicate that the KATP channel in pancreatic beta cells is a key regulator of both glucose- and sulfonylurea-induced insulin secretion and suggest also that the KATP channel in skeletal muscle might be involved in insulin action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T helper 1 cells play a major role in protective immunity against mycobacterial pathogens. Since the antigen (Ag) specificity of CD4+ human T cells is strongly controlled by HLA class II polymorphism, the immunogenic potential of candidate Ags needs to be defined in the context of HLA polymorphism. We have taken advantage of class II-deficient (Ab0) mice, transgenic for either HLA-DRA/B1*0301 (DR3) or HLA-DQB1*0302/DQA*0301 (DQ8) alleles. In these animals, all CD4+ T cells are restricted by the HLA molecule. We reported previously that human DR3-restricted T cells frequently recognize heat shock protein (hsp)65 of Mycobacterium tuberculosis, and only a single hsp65 epitope, p1–20. DR3.Ab0 mice, immunized with bacillus Calmette–Guérin or hsp65, developed T cell responses to M. tuberculosis, and recognized the same hsp65 epitope, p1–20. Hsp65-immunized DQ8.Ab0 mice mounted a strong response to bacillus Calmette–Guérin but not to p1–20. Instead, we identified three new DQ8-restricted T cell epitopes in the regions 171–200, 311–340, and 411–440. DR3.Ab0 mice immunized with a second major M. tuberculosis protein, Ag85 (composed of 85A, 85B, and 85C), also developed T cell responses against only one determinant, 85B p51–70, that was identified in this study. Importantly, subsequent analysis of human T cell responses revealed that HLA-DR3+, Ag85-reactive individuals recognize exactly the same peptide epitope as DR3.Ab0 mice. Strikingly, both DR3-restricted T cell epitopes represent the best DR3-binding sequences in hsp65 and 85B, revealing a strong association between peptide-immunodominance and HLA binding affinity. Immunization of DR3.Ab0 with the immunodominant peptides p1–20 and p51–70 induced T cell reactivity to M. tuberculosis. Thus, for two different Ags, T cells from DR3.Ab0 mice and HLA-DR3+ humans recognize the same immunodominant determinants. Our data support the use of HLA-transgenic mice in identifying human T cell determinants for the design of new vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cbl is the product of the protooncogene c-cbl and is involved in T cell antigen receptor (TCR)-mediated signaling. To understand the role of Cbl for immune system development and function, we generated a Cbl-deficient mouse strain. In Cbl-deficient mice, positive selection of the thymocytes expressing major histocompatibility complex class II-restricted transgenic TCR was significantly enhanced. Two factors may have contributed to the altered thymic selection. First, Cbl deficiency markedly up-regulated the activity of ZAP-70 and mitogen-activated protein kinases. The mitogen-activated protein kinase pathway was shown previously to be involved in thymic positive selection. Second, Cbl-deficient thymocytes expressed CD3 and CD4 molecules at higher levels, which consequently may increase the avidity of TCR/major histocompatibility complex/coreceptor interaction. Thus, Cbl plays a novel role in modulating TCR-mediated multiple signaling pathways and fine-tunes the signaling threshold for thymic selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have suggested that ionizing radiation causes irreparable DNA double-strand breaks in mice and cell lines harboring mutations in any of the three subunits of DNA-dependent protein kinase (DNA-PK) (the catalytic subunit, DNA-PKcs, or one of the DNA-binding subunits, Ku70 or Ku86). In actuality, these mutants vary in their ability to resolve double-strand breaks generated during variable (diversity) joining [V(D)J] recombination. Mutant cell lines and mice with targeted deletions in Ku70 or Ku86 are severely compromised in their ability to form coding and signal joints, the products of V(D)J recombination. It is noteworthy, however, that severe combined immunodeficient (SCID) mice, which bear a nonnull mutation in DNA-PKcs, are substantially less impaired in forming signal joints than coding joints. The current view holds that the defective protein encoded by the murine SCID allele retains enough residual function to support signal joint formation. An alternative hypothesis proposes that DNA-PKcs and Ku perform different roles in V(D)J recombination, with DNA-PKcs required only for coding joint formation. To resolve this issue, we examined V(D)J recombination in DNA-PKcs-deficient (SLIP) mice. We found that the effects of this mutation on coding and signal joint formation are identical to the effects of the SCID mutation. Signal joints are formed at levels 10-fold lower than in wild type, and one-half of these joints are aberrant. These data are incompatible with the notion that signal joint formation in SCID mice results from residual DNA-PKcs function, and suggest a third possibility: that DNA-PKcs normally plays an important but nonessential role in signal joint formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The murine γ-herpesvirus 68 replicates in epithelial sites after intranasal challenge, then persists in various cell types, including B lymphocytes. Mice that lack CD4+ T cells (I-Ab−/−) control the acute infection, but suffer an ultimately lethal recrudescence of lytic viral replication in the respiratory tract. The consequences of CD4+ T cell deficiency for the generation and maintenance of murine γ-herpesvirus 68-specific CD8+ set now have been analyzed by direct staining with viral peptides bound to major histocompatibility complex class I tetramers and by a spectrum of functional assays. Both acutely and during viral reactivation, the CD8+ T cell responses in the I-Ab−/− group were no less substantial than in the I-Ab+/+ controls. Indeed, virus-specific CD8+ T cell numbers were increased in the lymphoid tissue of clinically compromised I-Ab−/− mice, although relatively few of the potential cytotoxic T lymphocyte effectors were recruited back to the site of pathology in the lung. Thus the viral reactivation that occurs in the absence of CD4+ T cells was not associated with any exhaustion of the virus-specific cytotoxic T lymphocyte response. It seems that CD8+ T cells alone are insufficient to maintain long-term control of this persistent γ-herpesvirus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth, differentiation, and programmed cell death (apoptosis) are mainly controlled by cytokines. The Janus kinase–signal transducers and activators of transcription (JAK-STAT) signal pathway is an important component of cytokine signaling. We have previously shown that STAT3 induces a molecule designated as SSI-1, which inhibits STAT3 functions. To clarify the physiological roles of SSI-1 in vivo, we generated, here, mice lacking SSI-1. These SSI-1−/− mice displayed growth retardation and died within 3 weeks after birth. Lymphocytes in the thymus and spleen of the SSI-1−/− mice exhibited accelerated apoptosis with aging, and their number was 20–25% of that in SSI-1+/+ mice at 10 days of age. However, the differentiation of lymphocytes lacking SSI-1 appeared to be normal. Among various pro- and anti-apoptotic molecules examined, an up-regulation of Bax was found in lymphocytes of the spleen and thymus of SSI-1−/− mice. These findings suggest that SSI-1 prevents apoptosis by inhibiting the expression of Bax.