939 resultados para Armored vessels.
Resumo:
Evacuation analysis of passenger and commercial shipping can be undertaken using computer-based simulation tools such as maritimeEXODUS. These tools emulate human shipboard behaviour during emergency scenarios; however it is largely based around the behaviour of civilian passengers and fixtures and fittings of merchant vessels. If these tools and procedures are to be applied to naval vessels there is a clear requirement to understand the behaviour of well-trained naval personnel interacting with the fixtures and fittings that are exclusive to warships. Human factor trials using Royal Navy training facilities were recently undertaken to collect data to improve our understanding of the performance of naval personnel in warship environments. The trials were designed and conducted by staff from the Fire Safety Engineering Group (FSEG) of the University of Greenwich on behalf of the Sea Technology Group (STG), Defence Procurement Agency. The trials involved a selection of RN volunteers with sea-going experience in warships, operating and traversing structural components under different angles of heel. This paper describes the trials and some of the collected data.
Resumo:
Recent electrophysiological studies have suggested that there is a subpopulation of cells in lymphatic vessels which act as pacemakers controlling the characteristic spontaneous contractile activity in this tissue. In this study, electron microscopy and immunohistochemical techniques were used on sheep mesenteric lymphatic vessels to investigate the morphology of the cells comprising the lymphatic wall. The smooth muscle cells were not orientated in circular and longitudinal layers as is seen in the gastrointestinal tract, but were arranged in bundles which interlock and cross over in a basket-weave fashion. Antibodies to Kit and vimentin, which are widely used to label specialised pacemaking cells in the gastrointestinal tract (known as interstitial cells of Cajal), demonstrated the existence of an axially orientated subpopulation of cells lying between the endothelium and the bulk of the smooth muscle. Examination of this area using electron microscopy showed cells which were electron dense compared to the underlying smooth muscle and contained caveolae, Golgi complexes, mitochondria, 10-nm filaments, a well-developed endoplasmic reticulum and a basal lamina. The smooth muscle cells typically contained caveolae, dense bodies, mitochondria, abundant filaments, sER and basal laminae. Cells dispersed for patch-clamp studies were also stained for vimentin and myosin. Myosin-staining cells had the typical spindle appearance of smooth muscle cells whereas the vimentin-positive cells could either be branched or more closely resemble the smooth muscle cells. The present study provides the first morphological evidence that specialised cells exist within the vascular system which have the ultrastructural characteristics of pacemaker cells in other tissues and are vimentin and Kit positive.
Steady-State Creep Analysis of Thick-Walled Spherical Pressure Vessels with Varying Creep Properties
Resumo:
Blood vessels are made up of several distinct cell types. Although it was originally thought that the tunica media of blood vessels was composed of a homogeneous population of fully differentiated smooth muscle cells, more recent data suggest the existence of multiple smooth muscle cell subpopulations in the vascular wall. One of the cell types contributing to this heterogeneity is the novel, irregularly shaped, noncontractile cell with thin processes, termed interstitial cell, found in the tunica media of both veins and arteries. While the principal role of interstitial cells in veins seems to be pacemaking, the role of arterial interstitial cells is less clear. This review summarises the knowledge of the functional and structural properties of vascular interstitial cells accumulated so far, offers hypotheses on their physiological role, and proposes directions for future research.
Resumo:
Endothelial cell association with vascular basement membranes is complex and plays a critical role in regulation of cell adhesion and proliferation. The interaction between the membrane-associated 67-kd receptor (67LR) and the basement membrane protein laminin has been studied in several cell systems where it was shown to be crucial for adhesion and attachment during angiogenesis. As angiogenesis in the pathological setting of proliferative retinopathy is a major cause of blindness in the Western world we examined the expression of 67LR in a murine model of hyperoxia-induced retinopathy that exhibits retinal neovascularization. Mice exposed to hyperoxia for 5 days starting at postnatal day 7 (P7) and returned to room air (at P12) showed closure of the central retinal vasculature. In response to the ensuing retinal ischemia, there was consistent preretinal neovascularization starting around P17, which persisted until P21, after which the new vessels regressed. Immunohistochemistry was performed on these retinas using an antibody specific for 67LR. At P12, immunoreactivity for 67LR was absent in the retina, but by P17 it was observed in preretinal proliferating vessels and also within the adjacent intraretinal vasculature. Intraretinal 67LR immunoreactivity diminished beyond P17 until by P21 immunoreactivity was almost completely absent, although it persisted in the preretinal vasculature. Control P17 mice (not exposed to hyperoxia) failed to demonstrate any 67LR immunoreactivity in their retinas. Parallel in situ hybridization studies demonstrated 67LR gene expression in the retinal ganglion cells of control and hyperoxia-exposed mice. In addition, the neovascular intra- and preretinal vessels of hyperoxia-treated P17 and P21 mice labeled strongly for 67LR mRNA. This study has characterized 67LR immunolocalization and gene expression in a murine model of ischemic retinopathy. Results suggest that, although the 67LR gene is expressed at high levels in the retinal ganglion cells, the mature receptor protein is preferentially localized to the proliferating retinal vasculature and is almost completely absent from quiescent vessels. The differential expression of 67LR between proliferating and quiescent retinal vessels suggests that this laminin receptor is an important and novel target for future chemotherapeutic intervention during proliferative vasculopathies.
Resumo:
Macroalgal invasions in coastal areas have been a growing concern during the past decade. The present study aimed to assess the role of hull fouling on recreational yachts as a vector for macroalgal introductions. Questionnaire and hull surveys were carried out in marinas in France and Spain. The questionnaires revealed that the majority of yacht owners are aware of seaweed introductions, usually undertake short range journeys, dry dock their boat at least once a year, and use antifouling paints. The hull survey showed that many in-service yachts were completely free of macroalgae. When present, fouling assemblages consisted mainly of one to two macroalgal species. The most commonly found species was the tolerant green seaweed Ulva flexuosa. Most of the other species found are also cosmopolitan and opportunistic. A few nonnative and potentially invasive Ceramiales (Rhodophyta) were found occasionally on in-service yachts. On the basis of the information gathered during interviews of yacht owners in the surveyed area, these occurrences are likely to be uncommon. However they can pose a significant risk of primary or secondary introductions of alien macroalgal species, especially in the light of the increase in yachting activities. With large numbers of recreational yachts and relatively rare occurrences of nonnative species on hulls, comprehensive screening programs do not seem justified or practical. The risks of transferring nonnative species may, however, be minimized by encouraging the behaviors that prevent fouling on hulls and by taking action against neglected boats before they can act as vectors.