1000 resultados para Arctic-ICE
Resumo:
Previous versions of the Consortium for Small-scale Modelling (COSMO) numerical weather prediction model have used a constant sea-ice surface temperature, but observations show a high degree of variability on sub-daily timescales. To account for this, we have implemented a thermodynamic sea-ice module in COSMO and performed simulations at a resolution of 15 km and 5 km for the Laptev Sea area in April 2008. Temporal and spatial variability of surface and 2-m air temperature are verified by four automatic weather stations deployed along the edge of the western New Siberian polynya during the Transdrift XIII-2 expedition and by surface temperature charts derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. A remarkable agreement between the new model results and these observations demonstrates that the implemented sea-ice module can be applied for short-range simulations. Prescribing the polynya areas daily, our COSMO simulations provide a high-resolution and high-quality atmospheric data set for the Laptev Sea for the period 14-30 April 2008. Based on this data set, we derive a mean total sea-ice production rate of 0.53 km3/day for all Laptev Sea polynyas under the assumption that the polynyas are ice-free and a rate of 0.30 km3/day if a 10-cm-thin ice layer is assumed. Our results indicate that ice production in Laptev Sea polynyas has been overestimated in previous studies.
Resumo:
The presence of melt ponds on the surface of Arctic sea ice significantly reduces its albedo, inducing a positive feedback leading to sea ice thinning. While the role of melt ponds in enhancing the summer melt of sea ice is well known, their impact on suppressing winter freezing of sea ice has, hitherto, received less attention. Melt ponds freeze by forming an ice lid at the upper surface, which insulates them from the atmosphere and traps pond water between the underlying sea ice and the ice lid. The pond water is a store of latent heat, which is released during refreezing. Until a pond freezes completely, there can be minimal ice growth at the base of the underlying sea ice. In this work, we present a model of the refreezing of a melt pond that includes the heat and salt balances in the ice lid, trapped pond, and underlying sea ice. The model uses a two-stream radiation model to account for radiative scattering at phase boundaries. Simulations and related sensitivity studies suggest that trapped pond water may survive for over a month. We focus on the role that pond salinity has on delaying the refreezing process and retarding basal sea ice growth. We estimate that for a typical sea ice pond coverage in autumn, excluding the impact of trapped ponds in models overestimates ice growth by up to 265 million km3, an overestimate of 26%.
Resumo:
The Arctic sea ice cover is thinning and retreating, causing changes in surface roughness that in turn modify the momentum flux from the atmosphere through the ice into the ocean. New model simulations comprising variable sea ice drag coefficients for both the air and water interface demonstrate that the heterogeneity in sea ice surface roughness significantly impacts the spatial distribution and trends of ocean surface stress during the last decades. Simulations with constant sea ice drag coefficients as used in most climate models show an increase in annual mean ocean surface stress (0.003 N/m2 per decade, 4.6%) due to the reduction of ice thickness leading to a weakening of the ice and accelerated ice drift. In contrast, with variable drag coefficients our simulations show annual mean ocean surface stress is declining at a rate of -0.002 N/m2 per decade (3.1%) over the period 1980-2013 because of a significant reduction in surface roughness associated with an increasingly thinner and younger sea ice cover. The effectiveness of sea ice in transferring momentum does not only depend on its resistive strength against the wind forcing but is also set by its top and bottom surface roughness varying with ice types and ice conditions. This reveals the need to account for sea ice surface roughness variations in climate simulations in order to correctly represent the implications of sea ice loss under global warming.
Resumo:
We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice–atmosphere and ice–ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice–ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities.
Resumo:
Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the “truth” disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.
Resumo:
This study is designed to compare the monthly continental snow cover and sea ice extent loss in the Arctic with regional atmospheric conditions including: mean sea level pressure, 925 hPa air temperature, and mean wind direction among others during the melt season (March-August) over the 29-year study period 1979-2007. Little research has gone into studying the concurrent variations in the annual loss of continental snow cover and sea ice extent across the land-ocean boundary, since these data are largely stored in incompatible formats. However, the analysis of these data, averaged spatially over three autonomous study regions located in Siberia, North America, and Western Russia, reveals a distinct difference in the response of snow and sea ice to the atmospheric forcing. On average, sea ice extent is lost earlier in the year, in May, than snow cover, in June, although Arctic sea ice is located farther north than continental snow in all three study regions. Once the loss of snow and ice extent begins, snow cover is completely removed sooner than sea ice extent, even though ice loss begins earlier in the melt season. Further, the analysis of the atmospheric conditions surrounding loss of snow and ice cover over the independent study regions indicates that conditions of cool temperatures with strong northeasterly winds in the later melt season months are effective at removing sea ice cover, likely through ice divergence, as are warmer temperatures via southerly winds directly forcing melt. The results of this study set the framework for further analysis of the direct influence of snow cover loss on later melt season sea ice extents and the predictability of snow and sea ice extent responses to modeled future climate conditions
Resumo:
This PhD thesis is embedded into the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) and investigates the radiative transfer through Arctic boundary-layer mixed-phase (ABM) clouds. For this purpose airborne spectral solar radiation measurements and simulations of the solar and thermal infrared radiative transfer have been performed. This work reports on measurements with the Spectral Modular Airborne Radiation measurement sysTem (SMART-Albedometer) conducted in the framework of ASTAR in April 2007 close to Svalbard. For ASTAR the SMART-Albedometer was extended to measure spectral radiance. The development and calibration of the radiance measurements are described in this work. In combination with in situ measurements of cloud particle properties provided by the Laboratoire de M¶et¶eorologie Physique (LaMP) and simultaneous airborne lidar measurements by the Alfred Wegener Institute for Polar and Marine Research (AWI) ABM clouds were sampled. The SMART-Albedometer measurements were used to retrieve the cloud thermodynamic phase by three different approaches. A comparison of these results with the in situ and lidar measurements is presented in two case studies. Beside the dominating mixed-phase clouds pure ice clouds were found in cloud gaps and at the edge of a large cloud field. Furthermore the vertical distribution of ice crystals within ABM clouds was investigated. It was found that ice crystals at cloud top are necessary to describe the observed SMART-Albedometer measurements. The impact of ice crystals on the radiative forcing of ABM clouds is in vestigated by extensive radiative transfer simulations. The solar and net radiative forcing was found to depend on the ice crystal size, shape and the mixing ratio of ice crystals and liquid water droplets.
Resumo:
Perennial snow and ice (PSI) extent is an important parameter of mountain environments with regard to its involvement in the hydrological cycle and the surface energy budget. We investigated interannual variations of PSI in nine mountain regions of interest (ROI) between 2000 and 2008. For that purpose, a novel MODIS data set processed at the Canada Centre for Remote Sensing at 250 m spatial resolution was utilized. The extent of PSI exhibited significant interannual variations, with coefficients of variation ranging from 5% to 81% depending on the ROI. A strong negative relationship was found between PSI and positive degree-days (threshold 0°C) during the summer months in most ROIs, with linear correlation coefficients (r) being as low as r = −0.90. In the European Alps and Scandinavia, PSI extent was significantly correlated with annual net glacier mass balances, with r = 0.91 and r = 0.85, respectively, suggesting that MODIS-derived PSI extent may be used as an indicator of net glacier mass balances. Validation of PSI extent in two land surface classifications for the years 2000 and 2005, GLC-2000 and Globcover, revealed significant discrepancies of up to 129% for both classifications. With regard to the importance of such classifications for land surface parameterizations in climate and land surface process models, this is a potential source of error to be investigated in future studies. The results presented here provide an interesting insight into variations of PSI in several ROIs and are instrumental for our understanding of sensitive mountain regions in the context of global climate change assessment.
Resumo:
The Arctic sea ice cover declined over the last few decades and reached a record minimum in 2007, with a slight recovery thereafter. Inspired by this the authors investigate the response of atmospheric and oceanic properties to a 1-yr period of reduced sea ice cover. Two ensembles of equilibrium and transient simulations are produced with the Community Climate System Model. A sea ice change is induced through an albedo change of 1 yr. The sea ice area and thickness recover in both ensembles after 3 and 5 yr, respectively. The sea ice anomaly leads to changes in ocean temperature and salinity to a depth of about 200 m in the Arctic Basin. Further, the salinity and temperature changes in the surface layer trigger a “Great Salinity Anomaly” in the North Atlantic that takes roughly 8 yr to travel across the North Atlantic back to high latitudes. In the atmosphere the changes induced by the sea ice anomaly do not last as long as in the ocean. The response in the transient and equilibrium simulations, while similar overall, differs in specific regional and temporal details. The surface air temperature increases over the Arctic Basin and the anomaly extends through the whole atmospheric column, changing the geopotential height fields and thus the storm tracks. The patterns of warming and thus the position of the geopotential height changes vary in the two ensembles. While the equilibrium simulation shifts the storm tracks to the south over the eastern North Atlantic and Europe, the transient simulation shifts the storm tracks south over the western North Atlantic and North America. The authors propose that the overall reduction in sea ice cover is important for producing ocean anomalies; however, for atmospheric anomalies the regional location of the sea ice anomalies is more important. While observed trends in Arctic sea ice are large and exceed those simulated by comprehensive climate models, there is little evidence based on this particular model that the seasonal loss of sea ice (e.g., as occurred in 2007) would constitute a threshold after which the Arctic would exhibit nonlinear, irreversible, or strongly accelerated sea ice loss. Caution should be exerted when extrapolating short-term trends to future sea ice behavior.
Dissolved organic carbon (DOC) in Arctic ground ice, from northwest Canada, east Siberia, and Alaska
Resumo:
Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have accumulated in late Pleistocene and Holocene unconsolidated deposits. Permafrost vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change are largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements which are important for ecosystems and carbon cycling. Here we show, using biogeochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage, with a maximum of 28.6 mg/L (mean: 9.6 mg/L). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly frozen and stored in ground ice, especially in ice wedges, even before further degradation. We found that ice wedges in the Yedoma region represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a freshwater reservoir of 4200 km**3. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.