999 resultados para Architecture, Greek
Resumo:
This paper argues a model of adaptive design for sustainable architecture within a framework of entropy evolution. The spectrum of sustainable architecture consists of efficient use of energy and material resource in the life-cycle of buildings, active involvement of the occupants into micro-climate control within the building, and the natural environment as the physical context. The interactions amongst all the parameters compose a complex system of sustainable architecture design, of which the conventional linear and fragmented design technologies are insufficient to indicate holistic and ongoing environmental performance. The latest interpretation of the Second Law of Thermodynamics states a microscopic formulation of an entropy evolution of complex open systems. It provides a design framework for an adaptive system evolves for the optimization in open systems, this adaptive system evolves for the optimization of building environmental performance. The paper concludes that adaptive modelling in entropy evolution is a design alternative for sustainable architecture.
Resumo:
This paper argues a model of open system design for sustainable architecture, based on a thermodynamics framework of entropy as an evolutionary paradigm. The framework can be simplified to stating that an open system evolves in a non-linear pattern from a far-from-equilibrium state towards a non-equilibrium state of entropy balance, which is a highly ordered organization of the system when order comes out of chaos. This paper is work in progress on a PhD research project which aims to propose building information modelling for optimization and adaptation of buildings environmental performance as an alternative sustainable design program in architecture. It will be used for efficient distribution and consumption of energy and material resource in life-cycle buildings, with the active involvement of the end-users and the physical constraints of the natural environment.
Resumo:
This paper argues a model of open systems evolution based on evolutionary thermodynamics and complex system science, as a design paradigm for sustainable architecture. The mechanism of open system evolution is specified in mathematical simulations and theoretical discourses. According to the mechanism, the authors propose an intelligent building model of sustainable design by a holistic information system of the end-users, the building and nature. This information system is used to control the consumption of energy and material resources in building system at microscopic scale, to adapt the environmental performance of the building system to the natural environment at macroscopic scale, for an evolutionary emergence of sustainable performance of buildings.
Resumo:
Pore architecture of scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for the seeded cells to organize into a functioning tissue. In this report, we investigated the effects of different concentration on silk fibroin protein 3D scaffold pore microstructure. Four pore size ranges of silk fibroin scaffolds were made by freeze-dry technique, with the pore sizes ranging from 50 to 300 µm. The pore size of the scaffold decreases as the concentration increases. Human mesenchymal stem cells were in vitro cultured in these scaffolds. After BMP7 gene transferred, DNA assay, ALP assay, hematoxylin–eosin staining, alizarin red staining and reverse transcription-polymerase chain reaction were performed to analyze the effect of the pore size on cell growth, differentiation and the secretion of extracellular matrix (ECM). Cell morphology in these 3D scaffolds was investigated by confocal microscopy. This study indicates mesenchymal stem cells prefer the group of scaffolds with pore size between 100 and 300 µm for better proliferation and ECM production
Resumo:
New-generation biomaterials for bone regenerations should be highly bioactive, resorbable and mechanically strong. Mesoporous bioactive glass (MBG), as a novel bioactive material, has been used for the study of bone regeneration due to its excellent bioactivity, degradation and drug-delivery ability; however, how to construct a 3D MBG scaffold (including other bioactive inorganic scaffolds) for bone regeneration still maintains a significant challenge due to its/their inherit brittleness and low strength. In this brief communication, we reported a new facile method to prepare hierarchical and multifunctional MBG scaffolds with controllable pore architecture, excellent mechanical strength and mineralization ability for bone regeneration application by a modified 3D-printing technique using polyvinylalcohol (PVA), as a binder. The method provides a new way to solve the commonly existing issues for inorganic scaffold materials, for example, uncontrollable pore architecture, low strength, high brittleness and the requirement for the second sintering at high temperature. The obtained 3D-printing MBG scaffolds possess a high mechanical strength which is about 200 times for that of traditional polyurethane foam template-resulted MBG scaffolds. They have highly controllable pore architecture, excellent apatite-mineralization ability and sustained drug-delivery property. Our study indicates that the 3D-printed MBG scaffolds may be an excellent candidate for bone regeneration.
Resumo:
This paper considers the problem of building a software architecture for a human-robot team. The objective of the team is to build a multi-attribute map of the world by performing information fusion. A decentralized approach to information fusion is adopted to achieve the system properties of scalability and survivability. Decentralization imposes constraints on the design of the architecture and its implementation. We show how a Component-Based Software Engineering approach can address these constraints. The architecture is implemented using Orca – a component-based software framework for robotic systems. Experimental results from a deployed system comprised of an unmanned air vehicle, a ground vehicle, and two human operators are presented. A section on the lessons learned is included which may be applicable to other distributed systems with complex algorithms. We also compare Orca to the Player software framework in the context of distributed systems.
Resumo:
The ability to play freely in our cities is essential for sustainable wellbeing. When integrated successfully into our cities, Urban Play performs an important role; physically, socially and culturally contributing to the image of the city. While Urban Play is essential, it also finds itself in conflict with the city. Under modernist urban approaches play activities have become progressively segregated from the urban context through a tripartite of design, procurement and management practices. Despite these restrictions, emergent underground play forms overcome the isolation of play within urban space. One of these activities (parkour) is used as an evocative case study to reveal the hidden urban terrains of desire and fear as it re-interprets the fabric of the city, eliciting practice based discussions about procurement, design and management practice along its route.
Resumo:
In this paper, I would like to outline the approach we have taken to mapping and assessing integrity systems and how this has led us to see integrity systems in a new light. Indeed, it has led us to a new visual metaphor for integrity systems – a bird’s nest rather than a Greek temple. This was the result of a pair of major research projects completed in partnership with Transparency International (TI). One worked on refining and extending the measurement of corruption. This, the second, looked at what was then the emerging institutional means for reducing corruption – ‘national integrity systems’
Resumo:
In fault detection and diagnostics, limitations coming from the sensor network architecture are one of the main challenges in evaluating a system’s health status. Usually the design of the sensor network architecture is not solely based on diagnostic purposes, other factors like controls, financial constraints, and practical limitations are also involved. As a result, it quite common to have one sensor (or one set of sensors) monitoring the behaviour of two or more components. This can significantly extend the complexity of diagnostic problems. In this paper a systematic approach is presented to deal with such complexities. It is shown how the problem can be formulated as a Bayesian network based diagnostic mechanism with latent variables. The developed approach is also applied to the problem of fault diagnosis in HVAC systems, an application area with considerable modeling and measurement constraints.
Resumo:
Notwithstanding the obvious potential advantages of information and communications technology (ICT) in the enhanced provision of healthcare services, there are some concerns associated with integration of and access to electronic health records. A security violation in health records, such as an unauthorised disclosure or unauthorised alteration of an individual's health information, can significantly undermine both healthcare providers' and consumers' confidence and trust in e-health systems. A crisis in confidence in any national level e-health system could seriously degrade the realisation of the system's potential benefits. In response to the privacy and security requirements for the protection of health information, this research project investigated national and international e-health development activities to identify the necessary requirements for the creation of a trusted health information system architecture consistent with legislative and regulatory requirements and relevant health informatics standards. The research examined the appropriateness and sustainability of the current approaches for the protection of health information. It then proposed an architecture to facilitate the viable and sustainable enforcement of privacy and security in health information systems under the project title "Open and Trusted Health Information Systems (OTHIS)". OTHIS addresses necessary security controls to protect sensitive health information when such data is at rest, during processing and in transit with three separate and achievable security function-based concepts and modules: a) Health Informatics Application Security (HIAS); b) Health Informatics Access Control (HIAC); and c) Health Informatics Network Security (HINS). The outcome of this research is a roadmap for a viable and sustainable architecture for providing robust protection and security of health information including elucidations of three achievable security control subsystem requirements within the proposed architecture. The successful completion of two proof-of-concept prototypes demonstrated the comprehensibility, feasibility and practicality of the HIAC and HIAS models for the development and assessment of trusted health systems. Meanwhile, the OTHIS architecture has provided guidance for technical and security design appropriate to the development and implementation of trusted health information systems whilst simultaneously offering guidance for ongoing research projects. The socio-economic implications of this research can be summarised in the fact that this research embraces the need for low cost security strategies against economic realities by using open-source technologies for overall test implementation. This allows the proposed architecture to be publicly accessible, providing a platform for interoperability to meet real-world application security demands. On the whole, the OTHIS architecture sets a high level of security standard for the establishment and maintenance of both current and future health information systems. This thereby increases healthcare providers‘ and consumers‘ trust in the adoption of electronic health records to realise the associated benefits.
Resumo:
Objective To determine the test-retest reliability of measurements of thickness, fascicle length (Lf) and pennation angle (θ) of the vastus lateralis (VL) and gastrocnemius medialis (GM) muscles in older adults. Participants Twenty-one healthy older adults (11 men and ten women; average age 68·1 ± 5·2 years) participated in this study. Methods Ultrasound images (probe frequency 10 MHz) of the VL at two sites (VL site 1 and 2) were obtained with participants seated with knee at 90º flexion. For GM measures, participants lay prone with ankle fixed at 15º dorsiflexion. Measures were taken on two separate occasions, 7 days apart (T1 and T2). Results The ICCs (95% CI) were: VL site 1 thickness = 0·96(0·90–0·98); VL site 2 thickness = 0·96(0·90–0·98), VL θ = 0·87(0·68–0·95), VL Lf = 0·80(0·50–0·92), GM thickness = 0·97(0·92–0·99), GM θ = 0·85(0·62–0·94) and GM Lf =0·90(0·75–0·96). The 95% ratio limits of agreement (LOAs) for all measures, calculated by multiplying the standard deviation of the ratio of the results between T1 and T2 by 1·96, ranged from 10·59 to 38·01%. Conclusion The ability of these tests to determine a real change in VL and GM muscle architecture is good on a group level but problematic on an individual level as the relatively large 95% ratio LOAs in the current study may encompass the changes in architecture observed in other training studies. Therefore, the current findings suggest that B-mode ultrasonography can be used with confidence by researchers when investigating changes in muscle architecture in groups of older adults, but its use is limited in showing changes in individuals over time.