84 resultados para Arcanobacterium pyogenes
Resumo:
In previous studies it has been established that resistance to superoxide by Neisseria gonorrhoeae is dependent on the accumulation of Mn(II) ions involving the ABC transporter, MntABC. A mutant strain lacking the periplasmic binding protein component (MntC) of this transport system is hypersensitive to killing by superoxide anion. In this study the mntC mutant was found to be more sensitive to H2O2 killing than the wild-type. Analysis of regulation of MntC expression revealed that it was de-repressed under low Mn(II) conditions. The N. gonorrhoeae mntABC locus lacks the mntR repressor typically found associated with this locus in other organisms. A search for a candidate regulator of mntABC expression revealed a homologue of PerR, a Mn-dependent peroxide-responsive regulator found in Gram-positive organisms. A perR mutant expressed more MntC protein than wild-type, and expression was independent of Mn(II), consistent with a role for PerR as a repressor of mntABC expression. The PerR regulon of N. gonorrhoeae was defined by microarray analysis and includes ribosomal proteins, TonB-dependent receptors and an alcohol dehydrogenase. Both the mntC and perR mutants had reduced intracellular survival in a human cervical epithelial cell model.
Resumo:
Traditional vaccines consisting of whole attenuated microorganisms, killed microorganisms, or microbial components, administered with an adjuvant (e.g. alum), have been proved to be extremely successful. However, to develop new vaccines, or to improve upon current vaccines, new vaccine development techniques are required. Peptide vaccines offer the capacity to administer only the minimal microbial components necessary to elicit appropriate immune responses, minimizing the risk of vaccination associated adverse effects, and focusing the immune response toward important antigens. Peptide vaccines, however, are generally poorly immunogenic, necessitating administration with powerful, and potentially toxic adjuvants. The attachment of lipids to peptide antigens has been demonstrated as a potentially safe method for adjuvanting peptide epitopes. The lipid core peptide (LCP) system, which incorporates a lipidic adjuvant, carrier, and peptide epitopes into a single molecular entity, has been demonstrated to boost immunogenicity of attached peptide epitopes without the need for additional adjuvants. The synthesis of LCP systems normally yields a product that cannot be purified to homogeneity. The current study describes the development of methods for the synthesis of highly pure LCP analogs using native chemical ligation. Because of the highly lipophilic nature of the LCP lipid adjuvant, difficulties (e.g. poor solubility) were experienced with the ligation reactions. The addition of organic solvents to the ligation buffer solubilized lipidic species, but did not result in successful ligation reactions. In comparison, the addition of approximately 1% (w/v) sodium dodecyl sulfate (SDS) proved successful, enabling the synthesis of two highly pure, tri-epitopic Streptococcus pyogenes LCP analogs. Subcutaneous immunization of B10.BR (H-2(k)) mice with one of these vaccines, without the addition of any adjuvant, elicited high levels of systemic IgG antibodies against each of the incorporated peptides. Copyright (c) 2006 European Peptide Society and John Wiley & Sons, Ltd.
Microwave decontamination of eyelid warming devices for the treatment of meibomian gland dysfunction
Resumo:
PURPOSE: The role of bacteria in meibomian gland dysfunction is unclear, yet contamination of compresses used as treatment may exacerbate this condition. This study therefore determined the effect of heating on bacteria on two forms of compress. METHODS: Cotton flannels and MGDRx EyeBags (eyebags) were inoculated by adding experimental inoculum (Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa; one species for each set of 3 eyebags and flannels). One of each were then randomised in to 3 groups: no heating (control); therapeutic (47.4±0.7°C); or sanitisation (68±1.1°C). After treatment, bacteria cell numbers were calculated. The experiment was repeated in triplicate. RESULTS: There was a statistically significant difference between each treatment with the eyebag for S. aureus (control=7.15±0.11logC/ml, therapeutic heating=5.24±0.59logC/ml, sanitisation heating=3.48±1.43logC/ml; P<0.001) and S. pyogenes (7.36±0.13, 5.73±0.26, 4.75±0.54; P<0.001). P. aeruginosa also showed a significant reduction (P<0.001) from control (6.39±0.34) to therapeutic (0.33±0.26) and sanitisation (0.33±0.21), but the latter were similar (P=1.000). For the flannels, there was significant difference between each treatment for S. aureus (6.89±0.46, 3.96±1.76, 0.42±0.90; P<0.001). For S. pyogenes, there was a significant reduction (P<0.001) from control (7.51±0.10) to therapeutic (5.91±0.62) and sanitisation (5.18±0.8), but the latter were similar (P=0.07). For P. aeruginosa, there was a significant difference (P<0.001) from control (7.15±0.36) to sanitisation (5.83±0.44); but not to therapeutic (6.84±0.31) temperatures (P=0.07). CONCLUSIONS: Therapeutic heating produces a significant reduction in bacteria on the eyebags, but only sanitisation heating appears effective for flannels. However, patients should be advised to heat the eyebag to sanitisation temperatures on initial use.
Resumo:
All pathogens require high energetic influxes to counterattack the host immune system and without this energy bacterial infections are easily cleared. This study is an investigation into one highly bioenergetic pathway in Pseudomonas aeruginosa involving the amino acid L-serine and the enzyme L-serine deaminase (L-SD). P. aeruginosa is an opportunistic pathogen causing infections in patients with compromised immune systems as well as patients with cystic fibrosis. Recent evidence has linked L-SD directly to the pathogenicity of several organisms including but not limited to Campylobacter jejuni, Mycobacterium bovis, Streptococcus pyogenes, and Yersinia pestis. We hypothesized that P. aeruginosa L-SD is likely to be critical for its virulence. Genome sequence analysis revealed the presence of two L-SD homo logs encoded by sdaA and sdaB. We analyzed the ability of P. aeruginosa to utilize serine and the role of SdaA and SdaB in serine deamination by comparing mutant strains of sdaA (PAOsdaA) and sdaB (PAOsdaB) with their isogenic parent P. aeruginosa P AO 1. We demonstrated that P. aeruginosa is unable to use serine as a sole carbon source. However, serine utilization is enhanced in the presence of glycine and this glycine-dependent induction of L-SD activity requires the inducer serine. The amino acid leucine was shown to inhibit L-SD activity from both SdaA and SdaB and the net contribution to L-serine deamination by SdaA and SdaB was ascertained at 34% and 66 %, respectively. These results suggest that P. aeruginosa LSD is quite different from the characterized E. coli L-SD that is glycine-independent but leucine-dependent for activation. Growth mutants able to use serine as a sole carbon source were also isolated and in addition, suicide vectors were constructed which allow for selective mutation of the sdaA and sdaB genes on any P. aeruginosa strain of interest. Future studies with a double mutant will reveal the importance of these genes for pathogenicity.
Resumo:
Las recombinasas específicas de secuencia son herramientas muy valiosas en la generación de modificaciones génicas condicionales. Estos sistemas permiten controlar la recombinación de forma específica de tejido, temporalmente, o ambas, y sortean diversas limitaciones de los sistemas de knockout (KO) convencionales, como la letalidad embrionaria o la generación de mecanismos compensatorios. Actualmente los sistemas Cre/loxP y Flp/FRT son los más empleados tanto en modelos animales como vegetales. La necesidad de realizar modificaciones más complejas en un mismo organismo hace que sea primordial caracterizar otras recombinasas que complementen a las existentes. La b recombinasa (b-rec) es originaria del plásmido pSM19035 de Streptococcus pyogenes. A diferencia de Cre y Flp, que en ausencia de factores adicionales catalizan la integración en un nuevo sustrato, la b-rec necesita un sustrato superenrollado y un cofactor de la reacción, una proteína asociada a la cromatina (como la procariota Hbsu o la eucariota HMG1). Se ha demostrado que la b-rec cataliza de forma específicamente intramolecular (resolución o inversión) la recombinación en células eucariotas, tanto de sustratos episomales como integrados en la cromatina, lo que indica que el entorno eucariota es capaz de proveer del cofactor y del superenrollamiento necesarios para que la b-rec realice su función. En este trabajo hemos determinado que la tasa de recombinación mediada por la b-rec no se ve afectada en absoluto por la deficiencia en el cofactor HMG1, alcanzando el mismo valor de recombinación en MEF KO en HMG1 que en wt. Este y otros datos confirman que en el entorno eucariota hay otras proteínas accesorias que pueden actuar de cofactores y sugiere que estas reacciones pueden ocurrir en la mayor parte de tejidos y tipos celulares. Para estudiar detalladamente el potencial de la b-rec en eucariotas desarrollamos un sistema de RAGE (activación génica mediada por recombinación) dependiente de la actividad b-rec; este sistema ha resultado funcional tanto en sustratos episomales como en sustratos integrados en la cromatina. También hemos generado un vector retroviral que porta la proteína de fusión b-Egfp, permitiendo de forma rápida y eficiente la integración y expresión funcional de nuestra proteína...
Resumo:
Fibronectin (FN) is a large extracellular matrix (ECM) protein that is made up of
type I (FNI), type II (FNII), & type III (FNIII) domains. It assembles into an insoluble
supra-‐‑molecular structure: the fibrillar FN matrix. FN fibrillogenesis is a cell‐‑mediated process, which is initiated when FN binds to integrins on the cell surface. The FN matrix plays an important role in cell migration, proliferation, signaling & adhesion. Despite decades of research, the FN matrix is one of the least understood supra-‐‑molecular protein assemblies. There have been several attempts to elucidate the exact mechanism of matrix assembly resulting in significant progress in the field but it is still unclear as to what are FN-‐‑FN interactions, the nature of these interactions and the domains of FN that
are in contact with each other. FN matrix fibrils are elastic in nature. Two models have been proposed to explain the elasticity of the fibrils. The first model: the ‘domain unfolding’ model postulates that the unraveling of FNIII domains under tension explains fibril elasticity.
The second model relies on the conformational change of FN from compact to extended to explain fibril elasticity. FN contain 15 FNIII domains, each a 7-‐‑strand beta sandwich. Earlier work from our lab used the technique of labeling a buried Cys to study the ‘domain unfolding’ model. They used mutant FNs containing a buried Cys in a single FNIII domain and found that 6 of the 15 FNIII domains label in matrix fibrils. Domain unfolding due to tension, matrix associated conformational changes or spontaneous folding and unfolding are all possible explanation for labeling of the buried Cys. The present study also uses the technique of labeling a buried Cys to address whether it is spontaneous folding and unfolding that labels FNIII domains in cell culture. We used thiol reactive DTNB to measure the kinetics of labeling of buried Cys in eleven FN III domains over a wide range of urea concentrations (0-‐‑9M). The kinetics data were globally fit using Mathematica. The results are equivalent to those of H-‐‑D exchange, and
provide a comprehensive analysis of stability and unfolding/folding kinetics of each
domain. For two of the six domains spontaneous folding and unfolding is possibly the reason for labeling in cell culture. For the rest of the four domains it is probably matrix associated conformational changes or tension induced unfolding.
A long-‐‑standing debate in the protein-‐‑folding field is whether unfolding rate
constants or folding rate constants correlate to the stability of a protein. FNIII domains all have the same ß sandwich structure but very different stabilities and amino acid sequences. Our study analyzed the kinetics of unfolding and folding and stabilities of eleven FNIII domains and our results show that folding rate constants for FNIII domains are relatively similar and the unfolding rates vary widely and correlate to stability. FN forms a fibrillar matrix and the FN-‐‑FN interactions during matrix fibril formation are not known. FNI 1-‐‑9 or the N-‐‑ terminal region is indispensible for matrix formation and its major binding partner has been shown to be FNIII 2. Earlier work from our lab, using FRET analysis showed that the interaction of FNI 1-‐‑9 with a destabilized FNIII 2 (missing the G strand, FNIII 2ΔG) reduces the FRET efficiency. This efficiency is restored in the presence of FUD (bacterial adhesion from S. pyogenes) that has been known to interact with FNI 1-‐‑9 via a tandem ß zipper. In the present study we
use FRET analysis and a series of deletion mutants of FNIII 2ΔG to study the shortest fragment of FNIII 2ΔG that is required to bind FNI 1-‐‑9. Our results presented here are qualitative and show that FNIII 2ΔC’EFG is the shortest fragment required to bind FNI 1-‐‑9. Deletion of one more strand abolishes the interaction with FNI 1-‐‑9.
Resumo:
The Group A Streptococcus (GAS), or Streptococcus pyogenes, is a strict human pathogen that colonizes a variety of sites within the host. Infections can vary from minor and easily treatable, to life-threatening, invasive forms of disease. In order to adapt to niches, GAS utilizes environmental cues, such as carbohydrates, to coordinate the expression of virulence factors. Research efforts to date have focused on identifying how either components of the phosphoenolpyruvate-phosphotransferase system (PTS) or global transcriptional networks affect the regulation of virulence factors, but not the synergistic relationship between the two. The present study investigates the role of a putative PTS-fructose operon encoded by fruRBA and its role in virulence in the M1T1 strain 5448. Growth in fructose resulted in induction of fruRBA. RT-PCR showed that fruRBA formed an operon, which was repressed by FruR in the absence of fructose. Growth and carbon utilization profiles revealed that although the entire fruRBA operon was required for growth in fructose, FruA was the main fructose transporter. The ability of both ΔfruR and ΔfruB mutants to survive in whole human blood or neutrophils was impaired. However, the phenotypes were not reproduced in murine whole blood or in a mouse intraperitoneal infection, indicating a human-specific mechanism. While it is known that the PTS can affect activity of the Mga virulence regulator, further characterization of the mechanism by which sugars and its protein domains affect activity have not been studied. Transcriptional studies revealed that the core Mga regulon is activated more in a glucose-rich than a glucose-poor environment. This activation correlates with the differential phosphorylation of Mga at its PTS regulatory domains (PRDs). Using a 5448 mga mutant, transcriptome studies in THY or C media established that the Mga regulon reflects the media used. Interestingly, Mga regulates phage-encoded DNases in a low glucose environment. We also show that Mga activity is dependent on C-terminal amino acid interactions that aid in the formation of homodimers. Overall, the studies presented sought to define how external environmental cues, specifically carbohydrates, control complex regulatory networks used by GAS, contribute to pathogenesis, and aid in adaptation to various nutrient conditions encountered.
Resumo:
Objetivo: Validar los criterios de CENTOR modificados (CENTOR-m) y los tests rápidos de detección del antígeno de Estreptococo del Grupo A (SGA) en la faringitis aguda. Diseño: Estudio de validación de pruebas diagnósticas. Emplazamiento y participantes: Ciento un pacientes elegibles, que consultaron al departamento de urgencias de un hospital de tercer nivel con cuadro clínico compatible con faringitis aguda. Mediciones Principales: Se obtuvieron muestras de hisopados faríngeos para la realización del test rápido antigénico para SGA (FAMR) y para cultivo, respectivamente. Se calculó en cada caso los criterios de CENTOR-m. Resultados: La edad media de los pacientes incluidos en el estudio fue de 22,6 años (DE:13,8). El 48,5 % eran varones. El SGA fue el patógeno aislado en el 20,79 % de los casos. El CENTOR-m presentó una sensibilidad del 83,3 % (50,9 %-97,1 %), especificidad del 45,5 % (30,7 %-61,0 %) valor predictivo positivo (VPP) del 29,4 % (15,7 %-47,7 %) y valor predictivo negativo (VPN) del 90,9 % (69,4 %-98,4 %). El FAMR presento una sensibilidad del 81,5 % (61,3 %-93,0 %) especificidad del 98,6 % (91,4 %-99,9 %), VPP del 95,7 % (76,0 %-99,8 %) y VPN del 93,3 % (84,5 %-97,5 %). El 49,5 % de los pacientes recibieron antibióticos basándose en el juicio médico, lo que resultó en una proporción de sobreindicación de antimicrobianos del 62 %. Conclusiones: Los criterios de CENTOR-m demostraron adecuado valor pronóstico negativo y el FAMR buena sensibilidad, especificidad y valor pronóstico positivo para faringitis por SGA. La utilización de ambos métodos en la atención urgente podría optimizar el manejo de la patología y la adecuación antibiótica.
Resumo:
Tuberculosis-like lesions (TBL) in pigs have been associated with microorganisms other than mycobacteria. In this work a histopathological and microbiological evaluation of TBL in pigs is shown. A total of 352 samples belonging to 171 pigs totally condemned at slaughterhouse due to generalized TBL were sampled and selected for analysis. Pyogranulomatous (56.2%) and granulomatous lesions (20.2%) were observed in all analysed organs. Most of the granulomas observed in both lymph nodes and lungs belonged to more advanced stages of development (stages III and IV) whereas in the liver and the spleen most of lesions belonged to intermediate stages (stages II and III). Different microorganisms were simultaneously detected from TBL in the 42.7% of the animals. Mycobacterium tuberculosis complex (MTC) (38%), coryneform bacteria (40.3%) and streptococci (28.1%) were the main groups of microorganisms detected after bacteriological analysis, with Trueperella pyogenes and Streptococcus suis as the most frequently isolated species. Mycobacteria belonging to MTC were the most frequently detected pathogens in granulomatous and pyogranulomatous lesions in submandibular lymph nodes (32.7%) and coryneform bacteria were the microorganisms more frequently isolated from lungs (25.9%) and spleen samples (37.2%). These results may provide new insights into the pathogenesis and diagnosis of this pathology. The importance of coryneform bacteria and streptococci in such processes must be evaluated in future studies.