999 resultados para Aragonite stalagmite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern carbonate sedimentation takes place on the northern Mauritanian shelf (20°N), where typical tropical components (e.g. hermatypic reefs, calcareous green algae) are absent. Such deposits are reminiscent of extratropical sediment in the geological record. The tropical open shelf of Mauritania is influenced by large siliciclastic dust input and upwelling, highly fertilizing the ocean, as well as strongly limiting the light penetration. In this context, temperature does not appear to be the steering factor of carbonate production. This thesis describes the depositional system of the Golfe d'Arguin off Mauritania and focuses on environmental conditions that control the depositional pattern, in particular carbonate production. The description of this modern analogue provides a tool for paleoenvironmental interpretation of ancient counterparts. The Golfe d'Arguin is a broad shallow shelf comprising extensive shoals (<10 m water depth; i.e. the Banc d'Arguin) on the inner shelf where waters warm up. The sediments collected in water depths between 4 and 600 m are characterized by mixed carbonate and siliciclastic (dust) deposits. They vary from clean coarse-grained, almost pure carbonate loose sediments to siliciclastic-dominated fine-grained sediments. The carbonate content and sediment grain size show a north-south decreasing pattern through the Golfe d'Arguin and are controlled by the hydraulic regime influenced by wind-driven surface currents, swell, and tidal currents. The carbonate grain association is heterozoan. Components include abundant molluscs, foraminifers, and worm tubes, as well as barnacles and echinoderms, elements that are also abundant in extratropical sediments. The spatial distribution of the sedimentary facies of the Golfe d'Arguin does not display a depth zonation but rather a mosaic (i.e. patchy distribution). The depth and climatic signatures of the different sedimentary facies are determined by taxonomic and ecological investigations of the carbonate-secreting biota (molluscs and foraminifers). While certain planktonic foraminifers and molluscs represent upwelling elements, other components (e.g. mollusc and benthic foraminifer taxa) demonstrate the tropical origin of the sediment. The nutrient-rich (and thus also low light-penetration) conditions are reflected in the fact that symbiotic and photosynthetic carbonate-producing organisms (e.g. hermatypic corals) are absent. The Mauritanian deposits represent an environment that is rare in the modern world but might have been more common in the geological past when global temperatures were higher. Taxonomic and ecological studies allow for distinguishing carbonate sediments formed under either tropical high-nutrient or extratropical conditions, thus improving paleoclimate reconstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigation of the Middle Miocene-Pleistocene succession in cores at ODP Site 817A (Leg 133), drilled on the slope south of the Queensland Plateau, identified the various material fluxes contributing to sedimentation and has determined thereby the paleogeographic events which occurred close to the studied area and influenced these fluxes. To determine proportions of platform origin and of plankton origin of carbonate mud, two reference sediments were collected: (1) back-reef carbonate mud from the Young Reef area (Great Barrier Reef); and (2) Late Miocene chalk from the Loyalty Basin, off New Caledonia. Through their biofacies and mineralogical and geochemical characters, these reference sediments were used to distinguish the proportions of platform and basin components in carbonate muds of 25 core samples from Hole 817A. Two "origin indexes" (i1 and i2) relate the proportion in platform and basin materials. The relative sedimentation rate is inferred from the high-frequency cycles determined by redox intervals in the cores. Bulk carbonate deposited in each core has been calculated in two ways with close results: (1) from calcimetric data available in the Leg 133 preliminary reports (Davies et al., 1991); and (2) from average magnetic susceptibility of cores, a value negatively correlated to the average carbonate content. Vertical changes in sedimentation rates, in carbonate content, in origin indexes and in "linear fluxes" document the evolution of sediment origins from platform carbonates, planktonic carbonates and insoluble material through time. These data are augmented with the variations in organic-matter content through the 817A succession. The observed changes and their interpretation are not modified by compaction, and are compatible with major paleogeographic events including drowning of the Queensland Plateau (Middle Miocene-Early Pliocene) and the renewal of shallow carbonate production, (1) during the Late Pliocene, and (2) from the Early Pleistocene. The birth and growth of the Great Barrier Reef is also recorded from 0.5 Ma by a strengthening of detrital carbonate deposition and possibly by a lack of clay minerals in the 4 upper cores, a response to trapping of terrigenous material behind this barrier. In addition, a maximum of biological silica production is displayed in the Middle Miocene. These changes constrain the time of events and the sequence-stratigraphy framework some components of which are transgression surface, maximum flooding surface and low-stand turbidites. Sedimentation rates and material fluxes show cycles lasting 1.75 Myr. Whatever their origin (climatic and/or eustatic) these cycles affected the planktonic production primarily. The changes also show that major carbonate variations in the deposits are due to a dilution effect by insoluble material (clay, biogenic silica and volcanic glasses) and that plankton productivity, controlling the major fraction of carbonate sedimentation, depends principally on terrigenous supplies, but also on deep-water upwelling. Accuracy of the method is reduced by redeposition, reworking, and probable occurrence of hiatuses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 1.4-m.y.-long stable oxygen isotope record of Site 1006 in the low-latitude North Atlantic Ocean shows large glacial/interglacial amplitude changes caused by a combination of temperature and salinity fluctuations. A trend of increased sea-surface temperatures during the interglacial periods is present in the record beginning at isotopic Stage 11 and ultimately leading to the lightest d18O values in isotopic Stages 9, 5, and 1. Maximum d18O values are recorded during glacial isotopic Stages 6 and 8. Stable isotopic variability increased during the Brunhes Chron at the 100-ka time scale. The large amplitude changes can best be explained by global and regional ocean circulation changes. Increased strengthened return flow of warm salty water from the Pacific may have occurred during interglacial periods since isotopic Stage 11, which was largely reduced during glacial periods. The large climate fluctuations had a profound effect on the shallow-water carbonate production of the Great Bahama Bank. The aragonite content of the sediments shows fluctuations that follow the d18O record. The leeward side of the Great Bahama Bank received increased input of platform material during sea-level highstands when the sea-surface waters were warm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The age structure and, stable isotope composition of a stalagmite (CC I) from an upland cave in central-western Italy were studied to investigate regional response to global climatic changes. Four growth phases are constrained by 28 thermal ionization and multi-collector inductively coupled plasma mass spectrometry Th-U ages and reveal intermittent deposition through the period between Marine isotope Stage (MIS) 11 and 3 (similar to380 and similar to43 kyr). Most of the growth took place between similar to380 and similar to280 kyr, a period punctuated briefly by a hiatus in deposition through the glacial maximum of MIS 10. Growth was terminated abruptly at 280 kyr just prior to the MIS 8 glacial maximum. With a present-day chamber temperature of 7.5 degreesC, the timing of hiatuses close to these glacial maxima point to freezing conditions at the time. No deposition was recorded through the entirety of MIS 7 and most of MIS 6, whilst two minor growth phases occurred at similar to141-125 and similar to43 kyr. Growth at 141 kyr indicates temperatures >0 degreesC at a time when MIS 6 ice volumes were close to their maximum. High stable carbon isotope (delta(13)C) values (similar to2.8parts per thousand to +3.1parts per thousand) throughout the stalagmite's growth reflect a persistently low input of biogenic CO2, indicating that the steep, barren and alpine-like recharge area of today ha's been in existence for at least the last similar to380 kyr. During MIS 9, the lowest delta(13)C values occur well after maximum interglacial conditions, suggesting a lag in the development of post-glacial soils in this high-altitude karst. The stable oxygen isotope (delta(18)O) trends match the main structural features of the major climate proxy records (SPECMAP, Vostok and Devils Hole), suggesting that the delta(18)O of CC1 has responded to global-scale climate changes, whilst remarkable similarity exists between CC1 delta(18)O and regional sea-surface temperature reconstructions from North Atlantic core ODP980 and southwest Pacific marine core MD97-2120 through the most detailed part of the CC1 record, MIS 9-8. The results suggest that CC1 and other stalagmites from the cave have the potential to capture a long record of regional temperature trends, particularly in regards to the relative severity of Pleistocene glacial stages. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-proxy data from an Italian stalagmite constrain the commencement of full Last Interglacial conditions in southern Europe at 129 +/- 1 ka, consistent with absolutely dated records currently available from both hemispheres. The post-glacial transition towards warmer and wetter conditions commenced at 134 +/- 2 ka. Oxygen isotope evidence suggests this was interrupted briefly at 130 +/- 2 ka, an event probably related to the 'Termination II pause' associated with Heinrich Event 11. For most of the stalagmite, the pattern of delta(18)O variation mimics the air temperature record from the Vostok ice core, especially through marine isotope stage 5. There is no obvious evidence for substantial 'early interglacial' warming.