264 resultados para Arachidonic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Fish oils are rich in the long-chain n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids. Linseed oil and green plant tissues are rich in the precursor fatty acid, a-linolenic acid (18:3n-3). Most vegetable oils are rich in the n-6 PUFA linoleic acid (18:2n-6), the precursor of arachidonic acid (20:4n-6). 2. Arachidonic acid-derived eicosanoids such as prostaglandin E2 are pro-inflammatory and regulate the functions of cells of the immune system. Consumption of fish oils leads to replacement of arachidonic acid in cell membranes by eicosapentaenoic acid. This changes the amount and alters the balance of eicosanoids produced. 3. Consumption of fish oils diminishes lymphocyte proliferation, T-cell-mediated cytotoxicity, natural killer cell activity, macrophage-mediated cytotoxicity, monocyte and neutrophil chemotaxis, major histocompatibility class II expression and antigen presentation, production of pro-inflammatory cytokines (interleukins 1 and 6, tumour necrosis factor) and adhesion molecule expression. 4. Feeding laboratory animals fish oil reduces acute and chronic inflammatory responses, improves survival to endotoxin and in models of autoimmunity and prolongs the survival of grafted organs. 5. Feeding fish oil reduces cell-mediated immune responses. 6. Fish oil supplementation may be clinically useful in acute and chronic inflammatory conditions and following transplantation. 7. n-3 PUFAs may exert their effects by modulating signal transduction and/or gene expression within inflammatory and immune cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most conspicuous effect of bradykinin following its administration into the systemic circulation is a transient hypotension due to vasodilation. In the present study most of the available evidence regarding the mechanisms involved in bradykinin-induced arterial vasodilation is reviewed. It has become firmly established that in most species vasodilation in response to bradykinin is mediated by the release of endothelial relaxing factors following the activation of B2-receptors. Although in some cases the action of bradykinin is entirely mediated by the endothelial release of nitric oxide (NO) and/or prostacyclin (PGI2), a large amount of evidence has been accumulated during the last 10 years indicating that a non-NO/PGI2 factor accounts for bradykinin-induced vasodilation in a wide variety of perfused vascular beds and isolated small arteries from several species including humans. Since the effect of the non-NO/PGI2 endothelium-derived relaxing factor is practically abolished by disrupting the K+ electrochemical gradient together with the fact that bradykinin causes endothelium-dependent hyperpolarization of vascular smooth muscle cells, the action of such factor has been attributed to the opening of K+ channels in these cells. The pharmacological characteristics of these channels are not uniform among the different blood vessels in which they have been examined. Although there is some evidence indicating a role for KCa or KV channels, our findings in the mesenteric bed together with other reports indicate that the K+ channels involved do not correspond exactly to any of those already described. In addition, the chemical identity of such hyperpolarizing factor is still a matter of controversy. The postulated main contenders are epoxyeicosatrienoic acids or endocannabinoid agonists for the CB1-receptors. Based on the available reports and on data from our laboratory in the rat mesenteric bed, we conclude that the NO/PGI2-independent endothelium-dependent vasodilation induced by BK is unlikely to involve a cytochrome P450 arachidonic acid metabolite or an endocannabinoid agonist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that essential hypertension evolves in most patients with "near normal" levels of plasma renin activity. However, these levels appear to be responsible for the high levels of arterial pressure because they are normalized by the administration of angiotensin II converting inhibitors or angiotensin receptor antagonist. In experimental animals, hypertension can be induced by the continuous intravenous infusion of small doses of angiotensin II that are not sufficient to evoke an immediate pressor response. However, this condition resembles the characteristics of essential hypertension because the high levels of blood pressure exist with normal plasma levels of angiotensin II. It is suggested that small amounts of angiotensin whose plasma levels are inappropriate for the existing size of extracellular volume stimulate oxidative stress which binds nitric oxide forming peroxynitrite. The latter compound oxidizes arachidonic acid producing isoprostaglandin F2a (an isoprostane) which is characterized by a strong antinatriuretic vasoconstrictor renal effect. In this chain of reactions the vasoconstrictor effects derived from oxygen quenching of nitric oxide and increased isoprostane synthesis could explain how hypertension is maintained with normal plasma levels of renin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fatty acids have various effects on immune and inflammatory responses, acting as intracellular and intercellular mediators. Polyunsaturated fatty acids (PUFAs) of the omega-3 family have overall suppressive effects, inhibiting lymphocyte proliferation, antibody and cytokine production, adhesion molecule expression, natural killer cell activity and triggering cell death. The omega-6 PUFAs have both inhibitory and stimulatory effects. The most studied of these is arachidonic acid that can be oxidized to eicosanoids, such as prostaglandins, leukotrienes and thromboxanes, all of which are potent mediators of inflammation. Nevertheless, it has been found that many of the effects of PUFA on immune and inflammatory responses are not dependent on eicosanoid generation. Fatty acids have also been found to modulate phagocytosis, reactive oxygen species production, cytokine production and leukocyte migration, also interfering with antigen presentation by macrophages. The importance of fatty acids in immune function has been corroborated by many clinical trials in which patients show improvement when submitted to fatty acid supplementation. Several mechanisms have been proposed to explain fatty acid modulation of immune response, such as changes in membrane fluidity and signal transduction pathways, regulation of gene transcription, protein acylation, and calcium release. In this review, evidence is presented to support the proposition that changes in cell metabolism also play an important role in the effect of fatty acids on leukocyte functioning, as fatty acids regulate glucose and glutamine metabolism and mitochondrial depolarization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effects of adenosine on prolactin (PRL) secretion from rat anterior pituitaries incubated in vitro. The administration of 5-N-methylcarboxamidoadenosine (MECA), an analog agonist that preferentially activates A2 receptors, induced a dose-dependent (1 nM to 1 µM) increase in the levels of PRL released, an effect abolished by 1,3-dipropyl-7-methylxanthine, an antagonist of A2 adenosine receptors. In addition, the basal levels of PRL secretion were decreased by the blockade of cyclooxygenase or lipoxygenase pathways, with indomethacin and nordihydroguaiaretic acid (NDGA), respectively. The stimulatory effects of MECA on PRL secretion persisted even after the addition of indomethacin, but not of NDGA, to the medium. MECA was unable to stimulate PRL secretion in the presence of dopamine, the strongest inhibitor of PRL release that works by inducing a decrease in adenylyl cyclase activity. Furthermore, the addition of adenosine (10 nM) mimicked the effects of MECA on PRL secretion, an effect that persisted regardless of the presence of LiCl (5 mM). The basal secretion of PRL was significatively reduced by LiCl, and restored by the concomitant addition of both LiCl and myo-inositol. These results indicate that PRL secretion is under a multifactorial regulatory mechanism, with the participation of different enzymes, including adenylyl cyclase, inositol-1-phosphatase, cyclooxygenase, and lipoxygenase. However, the increase in PRL secretion observed in the lactotroph in response to A2 adenosine receptor activation probably was mediated by mechanisms involving regulation of adenylyl cyclase, independent of membrane phosphoinositide synthesis or cyclooxygenase activity and partially dependent on lipoxygenase arachidonic acid-derived substances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ipomoea imperati (Convolvulaceae) lives on the sandy shores of the Brazilian coast and in other areas of the world. The anti-inflammatory activity of a methanol-water extract of the leaves of I. imperati was investigated in experimental models of acute and subchronic inflammation. Topical application of the extract (10 mg/ear) inhibited mouse ear edema induced by croton oil (89.0 ± 1.3% by the lipid fraction with an IC50 of 3.97 mg/ear and 57.0 ± 1.3% by the aqueous fraction with an IC50 of 3.5 mg/ear) and arachidonic acid (42.0 ± 2.0% with an IC50 of 4.98 mg/ear and 31.0 ± 2.0% with an IC50 of 4.72 mg/ear). Phospholipase A2, purified from Apis mellifera bee venom, was also inhibited by the extract (5.0 mg/ml lipid and aqueous fraction) in vitro in a dose-dependent manner (85% by the lipid fraction with an IC50 of 3.22 mg/ml and 25% by the aqueous fraction with an IC50 of 3.43 mg/ml). The methanol-water extract of I. imperati (1000 mg/kg) administered by the oral route also inhibited the formation of cotton pellet-induced granulomas (73.2 ± 1.2% by the lipid fraction and 56.14 ± 2.7% by the aqueous fraction) and did not cause gastric mucosal lesions. I. imperati extracts (10 mg/ml) also inhibited in a dose-dependent manner the muscle contractions of guinea pig ileum induced by acetylcholine and histamine (IC50 of 1.60 mg/ml for the lipid fraction and 4.12 mg/ml for the aqueous fraction). These results suggest the use of I. imperati as an anti-inflammatory and antispasmodic agent in traditional medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of free cholesterol on the fatty acid composition and growth of rat fetal enterocytes was investigated in the absence and presence of 10% (v/v) fetal calf serum. Cholesterol caused a significant reduction of cell number after 6 and 12 h in culture. The fatty acid composition of enterocytes cultured in the presence of serum was also changed by the presence of 20 µM cholesterol. The fatty acid profile was determined by HPLC using fluorescence detection (325 nm excitation and 395 nm emission). Cholesterol (20 µM) increased the proportion (given in percentage of the total fatty acids) of the following fatty acids in cultured cells: lauric (by 42%), oleic (by 34%), linoleic (by 44%) and gamma-linolenic (by 20%) acids and reduced the proportion of palmitic (by 12%), stearic (by 20%), arachidonic (by 21%) and docosahexaenoic (by 44%) acids. In addition to modifying the content of individual fatty acids, cholesterol increased the polyunsaturated/saturated fatty acid ratio from 0.48 to 0.67 and the unsaturation index from 67.12 to 75.30. This is the first evidence that cholesterol modifies fatty acid composition possibly via de novo fatty acid synthesis and desaturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipids used in nutritional support of surgical or critically ill patients have been based on soybean oil, which is rich in the n-6 fatty acid linoleic acid (18:2n-6). Linoleic acid is the precursor of arachidonic acid (20:4n-6). In turn, arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids) including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. There is a view that an excess of n-6 fatty acids should be avoided since this could contribute to a state where physiological processes become dysregulated. One alternative is the use of fish oil. The rationale of this latter approach is that fish oil contains long chain n-3 fatty acids, such as eicosapentaenoic acid. When fish oil is provided, eicosapentaenoic acid is incorporated into cell membrane phospholipids, partly at the expense of arachidonic acid. Thus, there is less arachidonic acid available for eicosanoid synthesis. Hence, fish oil decreases production of prostaglandins like PGE2 and of leukotrienes like LTB4. Thus, n-3 fatty acids can potentially reduce platelet aggregation, blood clotting, smooth muscle contraction, and leukocyte chemotaxis, and can modulate inflammatory cytokine production and immune function. These effects have been demonstrated in cell culture, animal feeding and healthy volunteer studies. Fish oil decreases the host metabolic response and improves survival to endotoxin in laboratory animals. Recently clinical studies performed in various patient groups have indicated benefit from this approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have shown that the vascular reactivity of the mouse aorta differs substantially from that of the rat aorta in response to several agonists such as angiotensin II, endothelin-1 and isoproterenol. However, no information is available about the agonists bradykinin (BK) and DesArg9BK (DBK). Our aim was to determine the potential expression of kinin B1 and B2 receptors in the abdominal mouse aorta isolated from C57BL/6 mice. Contraction and relaxation responses to BK and DBK were investigated using isometric recordings. The kinins were unable to induce relaxation but concentration-contraction response curves were obtained by applying increasing concentrations of the agonists BK and DBK. These effects were blocked by the antagonists Icatibant and R-715, respectively. The potency (pD2) calculated from the curves was 7.0 ± 0.1 for BK and 7.3 ± 0.2 for DBK. The efficacy was 51 ± 2% for BK and 30 ± 1% for DBK when compared to 1 µM norepinephrine. The concentration-dependent responses of BK and DBK were markedly inhibited by the arachidonic acid inhibitor indomethacin (1 µM), suggesting a mediation by the cyclooxygenase pathway. These contractile responses were not potentiated in the presence of the NOS inhibitor L-NAME (1 mM) or endothelium-denuded aorta, indicating that the NO pathway is not involved. We conclude that the mouse aorta constitutively contains B1 and B2 subtypes of kinin receptors and that stimulation with BK and DBK induces contractile effect mediated by endothelium-independent vasoconstrictor prostanoids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This essay proposes that the ecologic association shown between the 20th century coronary heart disease epidemic and the 1918 influenza pandemic could shed light on the mechanism associated with the high lethality of the latter. It suggests that an autoimmune interference at the apoB-LDL interface could explain both hypercholesterolemia and inflammation (through interference with the cellular metabolism of arachidonic acid). Autoimmune inflammation, then, would explain the 1950s-60s acute coronary events (coronary thrombosis upon influenza re-infection) and the respiratory failure seen among young adults in 1918. This hypothesis also argues that the lethality of the 1918 pandemic may have not depended so much on the 1918 virus as on an immune vulnerability to it, possibly resulting from an earlier priming of cohorts born around 1890 by the 1890 influenza pandemic virus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitro-fatty acids are formed and detected in human plasma, cell membranes, and tissue, modulating metabolic as well as inflammatory signaling pathways. Here we discuss the mechanisms of nitro-fatty acid formation as well as their key chemical and biochemical properties. The electrophilic properties of nitro-fatty acids to activate anti-inflammatory signaling pathways are discussed in detail. A critical issue is the influence of nitroarachidonic acid on prostaglandin endoperoxide H synthases, redirecting arachidonic acid metabolism and signaling. We also analyze in vivo data supporting nitro-fatty acids as promising pharmacological tools to prevent inflammatory diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is not known whether the addition of ezetimibe to statins adds cardiovascular protection beyond the expected changes in lipid levels. Subjects with coronary heart disease were treated with four consecutive 1-week courses of therapy (T) and evaluations. The courses were: T1, 100 mg aspirin alone; T2, 100 mg aspirin and 40 mg simvastatin/10 mg ezetimibe; T3, 40 mg simvastatin/10 mg ezetimibe, and 75 mg clopidogrel (300 mg initial loading dose); T4, 75 mg clopidogrel alone. Platelet aggregation was examined in whole blood. Endothelial microparticles (CD51), platelet microparticles (CD42/CD31), and endothelial progenitor cells (CD34/CD133; CDKDR/CD133, or CD34/KDR) were quantified by flow cytometry. Endothelial function was examined by flow-mediated dilation. Comparisons between therapies revealed differences in lipids (T2 and T3T1 and T4, P=0.001). Decreased platelet aggregation was observed after aspirin (arachidonic acid, T1

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work was to evaluate the influence of diets containing different lipid sources on eggs quality during refrigerated storage, on yolk fatty acid composition, and on cholesterol in the yolk. Four diets were used containing Soy Oil (SO), Sunflower Seed (SS), and Meat and Bone Meal + Soy Oil (MBM + SO) or Meat and Bone Meal + Tallow (MBM + TA). The experiment followed a factorial design 4 × 3 with four dietary treatments and three storage times. The eggs were stored at 4 °C for 0, 30, and 60 days. The collected eggs were analyzed for egg weight loss, Haugh units, yolk moisture, yolk lipid oxidation, and cooked yolk firmness. Refrigerated storage reduced Haugh units, and increased yolk moisture. Sixty days of storage time reduced the firmness of hard-cooked yolk. There was an interaction between dietary treatment and storage time for egg weight loss and lipid oxidation. With regard to yolk fatty acid profile, MBM + TA diet increased the contents of palmitic and palmitoleic acids. The levels of oleic and arachidonic acids were higher in yolks from birds fed with SS diet. Linoleic acid level was higher in the yolk from treatment with SO diet. Diets containing MBM + SO induced higher levels of docosahexaenoic acid. Yolk cholesterol content was reduced with the inclusion of SS in the diet. Therefore, the type of lipid present in the diet and refrigerated storage for 60 days at 4 °C can affect the egg quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drosophila melanogaster is a model system for examining the mechanisms of action of neuropeptides. DPKQDFMRFamide was previously shown to induce contractions in Drosophila body wall muscle fibres in a Ca(2+)-dependent manner. The present study examined the possible involvement of a G-protein-coupled receptor and second messengers in mediating this myotropic effect after removal of the central nervous system. DPKQDFMRFamide-induced contractions were reduced by 70% and 90%, respectively, in larvae with reduced expression of the Drosophila Fmrf receptor (FR) either ubiquitously or specifically in muscle tissue, compared with the response in control larvae in which expression was not manipulated. No such effect occurred in larvae with reduced expression of this gene only in neurons. The myogenic effects of DPKQDFMRFamide do not appear to be mediated through either of the two Drosophila myosuppressin receptors (DmsR-1 and DmsR-2). DPKQDFMRFamide-induced contractions were not reduced in Ala1 transgenic flies lacking activity of calcium/calmodulin-dependent protein kinase (CamKII), and were not affected by the CaMKII inhibitor KN-93. Peptide-induced contractions in the mutants of the phospholipase C-β (PLCβ) gene (norpA larvae) and in IP3 receptor mutants were similar to contractions elicited in control larvae. The peptide failed to increase cAMP and cGMP levels in Drosophila body wall muscles. Peptide-induced contractions were not potentiated by 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor, and were not antagonized by inhibitors of cAMP-dependent or cGMP-dependent protein kinases. Additionally, exogenous application of arachidonic acid failed to induce myogenic contractions. Thus, DPKQDFMRFamide induces contractions via a G-protein coupled FMRFamide receptor in muscle cells but does not appear to act via cAMP, cGMP, IP3, PLC, CaMKII or arachidonic acid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction : L’effet biologique variable de l’aspirine a été attribué à un état de résistance pharmacologique. L’incidence de cette « résistance » varie selon la population ou la technologie étudiée. Méthodes : Nous avons déterminé la performance de 5 techniques évaluant l’effet de l’aspirine chez des sujets sains, non fumeurs et ne prenant aucune médication pouvant interférer avec la fonction plaquettaire. Des spécimens de sang et d’urine ont été obtenus avant et après 8-10 jours de prise de 80 mg d’aspirine. Résultats: Chez 45 sujets de 19-59 ans, la sensibilité (SE), la spécificité (SP), et la valeur optimale de coupure (CO) pour détecter l’effet de l’aspirine sont : agrégométrie par transmission optique induite avec 1,6 mM d’acide arachidonique (ATO-AA) - SE 100%, SP 95,9%, CO 20%; ATO-ADP 10 μM - SE 84,4%, SP 77,7%, CO 70%; VerifyNow® Aspirin - SE 100%, SP 95,6%, CO 550 ARU; agrégation en tube - SE 82,2%, SP 86,7%, CO 55%; TEG® - SE 82,9%, SP 75,8%, CO 90%; et le dosage de 11-dehydrothromboxane B2 urinaire - SE 62,2%, SP 82,2%, CO 60 pg/ml. Conclusions: La résistance à l’aspirine chez les sujets sains définie par ATO-AA et VerifyNow® Aspirin est rare. Puisque les autres techniques étudiées discriminent de façon sous optimale l’effet de l’aspirine, leur utilité dans la définition de la résistance pharmacologique à l’aspirine semble marginale. Ces résultats suggèrent qu’une proportion de la variabilité de l’incidence rapportée de “résistance à l’aspirine” est artefactuelle et reliée aux limitations technologiques de certaines analyses.