989 resultados para Arabian Sea warm pool


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foraminifera are an important faunal element of the benthos in oxygen-depleted settings such as Oxygen Minimum Zones (OMZs) where they can play a relevant role in the processing of phytodetritus. We investigated the uptake of phytodetritus (labeled with 13C and 15N) by cal-careous foraminifera in the 0-1 cm sediment horizon under different oxygen concentrations within the OMZ in the eastern Arabian Sea. The in situ tracer experiments were carried out along a depth transect on the Indian margin over a period of 4 to 10 days. The uptake of phy-todetrital carbon within 4 days by all investigated species shows that phytodetritus is a rele-vant food source for foraminifera in OMZ sediments. The decrease of total carbon uptake from 540 to 1100 m suggests a higher demand for carbon by species in the low-oxygen core region of the OMZ or less food competition with macrofauna. Especially Uvigerinids showed high uptake of phytodetrital carbon at the lowest oxygenated site. Variation in the ratio of phytodetrital carbon to nitrogen between species and sites indicates that foraminiferal carbon and nitrogen use can be decoupled and different nutritional demands are found between spe-cies. Lower ratio of phytodetrital carbon and nitrogen at 540 m could hint for greater demand or storage of food-based nitrogen, ingestion or hosting of bacteria under almost anoxic condi-tions. Shifts in the foraminiferal assemblage structure (controlled by oxygen or food availabil-ity) and in the presence of other benthic organisms account for observed changes in the pro-cessing of phytodetritus in the different OMZ habitats. Foraminifera dominate the short-term processing of phytodetritus in the OMZ core but are less important in the lower OMZ bounda-ry region of the Indian margin as biological interactions and species distribution of foraminifera change with depth and oxygen levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of the present study is to model the gravity fields in terms of lithospheric structure below the western continental margin of India (WCMI) identify zones of crustal mass anomalies and attempt to infer the location of Ocean Continent transition in the Arabian Sea. In this study, the area starting from the western shield margin to the region covering the deep oceanic parts of the Arabian Sea which is bounded by Carlsberg and Cerg and Central Indian ridges in the south, eastern part of the Indus Cone in the west and falling between 630E and 800E longitudes, and 50N - 240N latitudes has been considered. The vast amount of seismic reflection and refraction data in the form of crustal velocities, basement configuration and crustal thicknesses available for the west coast as well as the eastern Arabian Sea has been utilized for this purpose

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study dynamics of infaunal benthic community of the continental shelf of north-eastern Arabian sea. The benthic (under water sea) organisms play an important role in the marine food chain. It can be concluded that seasonal differences in the benthic community was observed in lower depths and absent in deeper depths. Increased richness and diversity during pre-monsoon may be related to the increased primary production which inturn influenced by the increased nutrient input due to winter convection. No single ecological factor could be considered as a master factor. In general the area supports moderately high benthic production and diversified community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to reveal the ability of bacteria isolated from Cochin estuary and the Arabian Sea to produce phosphatases, important characters of the enzymes, its ability to utilize organophosphorus compounds as source of phosphate and also their role in degradation of organophosphorus pesticides. It deals with isolation, identification and screening of bacteria for phosphatase production, and it describes the effect of cultural conditions on growth and phosphatase production. The effect of various factors like pH, NaCl concentration, temperature of incubation, carbon source, period of incubation etc. on growth and phosphatase production by the two selected species were studied to establish suitable environment for phosphatase production by these bacteria. In this study regulation of phosphatase synthesis, characteristics of acid and alkaline phosphatases are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study has been initiated to unravel the distribution of trace metals and its geochemical behavior in the Indian EEZ of the Arabian Sea and Bay of Bengal. Trace metal accumulation in aquatic consumers is of interest to ecologists and environmentalists so as to understand the fate and effect of contaminants in the food web dynamics and the biogeochemical cycling of trace metals. It is well established that oceanic distribution of macronutrients such as nitrate, phosphate and silicate provide critical to biological growth and related geochemical processes. In this study it can be inferred, that there is a need for a better understanding of background informations on trace metal concentrations with respect to space and time and their fluctuations in the Arabian Sea and Bay of Bengal zooplankton. Without a sound knowledge on spatio-temporal fluctuations, it will be impossible to differentiate anthropogenic metal inputs from natural background concentrations with a routine biomonitoring programme. Fe, Cu, Zn, Cd & Pb showed a slight enrichment in zooplankton from the Arabian Sea during spring intermonsoon compared to intermonsoon fall. The relative enrichment of Fe, Cu & Zn in zooplankton from the Arabian Sea during intermonsoon spring than intermonsoon fall was due to favourable bioaccumulation factors of these elements during this season. Nevertheless this study can be looked upon as a starting point for further investigations on these biogeochemically important processes, which are vital in addressing the dynamics of productivity of waters.