973 resultados para Aquatic humic acid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rapid development of nanotechnology and wider applications of engineered nanomaterials (ENMs) in the last few decades have generated concerns regarding their environmental and health risks. After release into the environment, ENMs undergo aggregation, transformation, and, for metal-based nanomaterials, dissolution processes, which together determine their fate, bioavailability and toxicity to living organisms in the ecosystems. The rates of these processes are dependent on nanomaterial characteristics as well as complex environmental factors, including natural organic matter (NOM). As a ubiquitous component of aquatic systems, NOM plays a key role in the aggregation, dissolution and transformation of metal-based nanomaterials and colloids in aquatic environments.

The goal of this dissertation work is to investigate how NOM fractions with different chemical and molecular properties affect the dissolution kinetics of metal oxide ENMs, such as zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs), and consequently their bioavailability to aquatic vertebrate, with Gulf killifish (Fundulus grandis) embryos as model organisms.

ZnO NPs are known to dissolve at relatively fast rates, and the rate of dissolution is influenced by water chemistry, including the presence of Zn-chelating ligands. A challenge, however, remains in quantifying the dissolution of ZnO NPs, particularly for time scales that are short enough to determine rates. This dissertation assessed the application of anodic stripping voltammetry (ASV) with a hanging mercury drop electrode to directly measure the concentration of dissolved Zn in ZnO NP suspensions, without separation of the ZnO NPs from the aqueous phase. Dissolved zinc concentration measured by ASV ([Zn]ASV) was compared with that measured by inductively coupled plasma mass spectrometry (ICP-MS) after ultracentrifugation ([Zn]ICP-MS), for four types of ZnO NPs with different coatings and primary particle diameters. For small ZnO NPs (4-5 nm), [Zn]ASV was 20% higher than [Zn]ICP-MS, suggesting that these small NPs contributed to the voltammetric measurement. For larger ZnO NPs (approximately 20 nm), [Zn]ASV was (79±19)% of [Zn]ICP-MS, despite the high concentrations of ZnO NPs in suspension, suggesting that ASV can be used to accurately measure the dissolution kinetics of ZnO NPs of this primary particle size.

Using the ASV technique to directly measure dissolved zinc concentration, we examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg-C L-1) for Suwannee River humic acid (SRHA), Suwannee River fulvic acid and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. NOM isolates with higher SUVA were also more effective at enhancing the colloidal stability of the NPs; however, the NOM-promoted dissolution was likely due to enhanced interactions between surface metal ions and NOM rather than smaller aggregate size.

Based on the above results, we designed experiments to quantitatively link the dissolution kinetics and bioavailability of CuO NPs to Gulf killifish embryos under the influence of NOM. The CuO NPs dissolved to varying degrees and at different rates in diluted 5‰ artificial seawater buffered to different pH (6.3-7.5), with or without selected NOM isolates at various concentrations (0.1-10 mg-C L-1). NOM isolates with higher SUVA and aromatic carbon content (such as SRHA) were more effective at promoting the dissolution of CuO NPs, as with ZnO NPs, especially at higher NOM concentrations. On the other hand, the presence of NOM decreased the bioavailability of dissolved Cu ions, with the uptake rate constant negatively correlated to dissolved organic carbon concentration ([DOC]) multiplied by SUVA, a combined parameter indicative of aromatic carbon concentration in the media. When the embryos were exposed to CuO NP suspension, changes in their Cu content were due to the uptake of both dissolved Cu ions and nanoparticulate CuO. The uptake rate constant of nanoparticulate CuO was also negatively correlated to [DOC]×SUVA, in a fashion roughly proportional to changes in dissolved Cu uptake rate constant. Thus, the ratio of uptake rate constants from dissolved Cu and nanoparticulate CuO (ranging from 12 to 22, on average 17±4) were insensitive to NOM type or concentration. Instead, the relative contributions of these two Cu forms were largely determined by the percentage of CuO NP that was dissolved.

Overall, this dissertation elucidated the important role that dissolved NOM plays in affecting the environmental fate and bioavailability of soluble metal-based nanomaterials. This dissertation work identified aromatic carbon content and its indicator SUVA as key NOM properties that influence the dissolution, aggregation and biouptake kinetics of metal oxide NPs and highlighted dissolution rate as a useful functional assay for assessing the relative contributions of dissolved and nanoparticulate forms to metal bioavailability. Findings of this dissertation work will be helpful for predicting the environmental risks of engineered nanomaterials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The biotic potential of the benthic filter feeding freshwater bivalve mollusc Lamellidens marginalis (Lamarck) influencing the nutrient dynamics of the bottom sediments of the lake by means of biodeposition and bioturbation activities were analysed using a lake mesocosm experiment. Five control as well as experimental mesocosms was maintained up to 60 days (d). The factors studied included the percentage of water content of the sediment, percentage of total nitrogen, percentage of organic matter along with the total phosphorus and humic acid content. While total phosphorus and humic acid content of the experimental mesocosoms showed gradual and significant increases from 30d of the experiment to reach the maximum levels after 60d, the percentage of organic matter registered significant increases right from 15d onwards and reached the maximum values after 60d. On the other hand, while the percentage of water content of the sediments of the experimental mesocosoms increased only up to 30d experiment, percentage of nitrogen was increased during the first half and at the fag end of the experiment. All the investigated ecological factors were found to be significantly influenced by the presence of L. marginalis in the experimental mesocosms. The study indicated that the mussel influence the nutrient dynamics of the inhabitant ecosystem through the processes of excretion, biodeposition of pseudofaeces and faeces, along with the bioturbation of the sediments brought about by their ploughing movements. KEYWORDS: freshwater mussel, Lamellidens marginalis, bioturbation, biodeposition, mesocosms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new procedure was developed in this study, based on a system equipped with a cellulose membrane and a tetraethylenepentamine hexaacetate chelator (MD-TEPHA) for in situ characterization of the lability of metal species in aquatic systems. To this end, the DM-TEPHA system was prepared by adding TEPHA chelator to cellulose bags pre-purified with 1.0 mol L-1 of HCl and NaOH solutions. After the MD-TEPHA system was sealed, it was examined in the laboratory to evaluate the influence of complexation time (0-24 h), pH (3.0, 4.0, 5.0, 6.0 and 7.0), metal ions (Cu, Cd, Fe, Mn and Ni) and concentration of organic matter (15, 30 and 60 mg L-1) on the relative lability of metal species by TEPHA chelator. The results showed that Fe and Cu metals were complexed more slowly by TEPHA chelator in the MD-TEPHA system than were Cd, Ni and Mn in all pH used. It was also found that the pH strongly influences the process of metal complexation by the MD-TEPHA system. At all the pH levels, Cd, Mn and Ni showed greater complexation with TEPHA chelator (recovery of about 95-75%) than did Cu and Fe metals. Time also affects the lability of metal species complexed by aquatic humic substances (AHS); while Cd, Ni and Mn showed a faster kinetics, reaching equilibrium after about 100 min, and Cu and Fe approached equilibrium after 400 min. Increasing the AHS concentration decreases the lability of metal species by shifting the equilibrium to AHS-metal complexes. Our results indicate that the system under study offers an interesting alternative that can be applied to in situ experiments for differentiation of labile and inert metal species in aquatic systems. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, four leachates samples from 3 different landfills localized in the north of Portugal were characterized and fractionated, to understand the decomposition degree and to evaluate their potential as an agent for fertilization. Humic substances (HS) were extracted, quantified, chemical characterized and further fractionated in humic acid (HA) and fulvic acid (FA). Keeping in mind the purpose to use these fractions as fertilizers, the phytotoxicity of HS, HA and FA solutions was evaluated on cress seed germination. The HS concentration was similar for all the leachates evaluated and was higher than 780 mg/L of total organic carbon. All the leachates analysed registered higher FA concentration than HA. The chemical characterization indicated that HA had a relatively higher aromatic character than the FA obtained from same sources. These results suggest that the HS from landfill leachates were in an early stage of humification, once the degree of humification increase as the landfilling age increase. Overall, the HS extracts showed absence of phytotoxicity, with germination index greater than 80% for samples treated to achieve low electric conductivity values. This suggests that the HS from the leachate may be used to produce liquid organic fertilizers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composting is the biological conversion of solid organic waste into usable end products such as fertilizers, substrates for mushroom production and biogas. Although composts are highly variable in their bulk composition, composting material is generally based on lignocellulose compounds derived from agricultural, forestry, fruit and vegetable processing, household and municipal wastes. Lignocellulose is very recalcitrant; however it is rich and abundant source of carbon and energy. Therefore lignocellulose degradation is essential for maintaining the global carbon cycle. In compost, the active component involved in the biodegradation and conversion processes is the resident microbial population, among which microfungi play a very important role. In composting pile the warm, humid, and aerobic environment provides the optimal conditions for their development. Microfungi use many carbon sources, including lignocellulosic polymers and can survive in extreme conditions. Typically microfungi are responsible for compost maturation. In order to improve the composting process, more information is needed about the microbial degradation process. Better knowledge on the lignocellulose degradation by microfungi could be used to optimize the composting process. Thus, this thesis focused on lignocellulose and humic compounds degradation by a microfungus Paecilomyces inflatus, which belongs to a flora of common microbial compost, soil and decaying plant remains. It is a very common species in Europe, North America and Asia. The lignocellulose and humic compounds degradation was studied using several methods including measurements of carbon release from 14C-labelled compounds, such as synthetic lignin (dehydrogenative polymer, DHP) and humic acids, as well as by determination of fibre composition using chemical detergents and sulphuric acid. Spectrophotometric enzyme assays were conducted to detect extracellular lignocellulose-degrading hydrolytic and oxidative enzymes. Paecilomyces inflatus secreted clearly extracellular laccase to the culture media. Laccase was involved in the degradation process of lignin and humic acids. In compost P. inflatus mineralised 6-10% of 14C-labelled DHP into carbon dioxide. About 15% of labelled DHP was converted into water-soluble compounds. Also humic acids were partly mineralised and converted into water-soluble material, such as low-molecular mass fulvic acid-like compounds. Although laccase activity in aromatics-rich compost media clearly is connected with the degradation process of lignin and lignin-like compounds, it may preferentially effect the polymerisation and/or detoxification of such aromatic compounds. P. inflatus can degrade lignin and carbohydrates also while growing in straw and in wood. The cellulolytic enzyme system includes endoglucanase and β-glucosidase. In P. inflatus the secretion of these enzymes was stimulated by low-molecular-weight aromatics, such as soil humic acid and veratric acid. When strains of P. inflatus from different ecophysiological origins were compared, indications were found that specific adaptation strategies needed for lignocellulosics degradation may operate in P. inflatus. The degradative features of these microfungi are on relevance for lignocellulose decomposition in nature, especially in soil and compost environments, where basidiomycetes are not established. The results of this study may help to understand, control and better design the process of plant polymer conversion in compost environment, with a special emphasis on the role of ubiquitous microfungi.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Autoxidation of pyrogallol in alkaline medium is characterized by increases in oxygen consumption, absorbance at 440 nm, and absorbance at 600 nm. The primary products are H2O2 by reduction of O-2 and pyrogallol-ortho-quinone by oxidation of pyrogallol. About 20 % of the consumed oxygen was used for ring opening leading to the bicyclic product, purpurogallin-quinone (PPQ). The absorbance peak at 440 nm representing the quinone end-products increased throughout at a constant rate. Prolonged incubation of pyrogallol in alkali yielded a product with ESR signal. In contrast the absorbance peak at 600 nm increased to a maximum and then declined after oxygen consumption ceased. This represents quinhydrone charge-transfer complexes as similar peak instantly appeared on mixing pyrogallol with benzoquinones, and these were ESR-silent. Superoxide dismutase inhibition of pyrogallol autoxidation spared the substrates, pyrogallol, and oxygen, indicating that an early step is the target. The SOD concentration-dependent extent of decrease in the autoxidation rate remained the same regardless of higher control rates at pyrogallol concentrations above 0.2 mM. This gave the clue that SOD is catalyzing a reaction that annuls the forward electron transfer step that produces superoxide and pyrogallol-semiquinone, both oxygen radicals. By dismutating these oxygen radicals, an action it is known for, SOD can reverse autoxidation, echoing the reported proposal of superoxide:semiquinone oxidoreductase activity for SOD. The following insights emerged out of these studies. The end-product of pyrogallol autoxidation is PPQ, and not purpurogallin. The quinone products instantly form quinhydrone complexes. These decompose into undefined humic acid-like complexes as late products after cessation of oxygen consumption. SOD catalyzes reversal of autoxidation manifesting as its inhibition. SOD saves catechols from autoxidation and extends their bioavailability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aspartic acid, threonine, serine and other thermally unstable amino acids have been found in fine-grained elastic sediments of advanced geologic age. The presence of these compounds in ancient sediments conflicts with experimental data determined for their simple thermal decomposition.

Recent and Late Miocene sediments and their humic acid extracts, known to contain essentially complete suites of amino acids, were heated with H2O in a bomb at temperatures up to 500°C in order to compare the thermal decomposition characteristics of the sedimentary amino compounds.

Most of the amino acids found in protein hydrolyzates are obtained from the Miocene rock in amounts 10 to 100 times less than from the Recent sediment. The two unheated humic acids are rather similar despite their great age difference. The Miocene rock appears uncontaminated by Recent carbon.

Yields of amino acids generally decline in the heated Recent sediment. Some amino compounds apparently increase with heating time in the Miocene rock.

Relative thermal stabilities of the amino acids in sediments are generally similar to those determined using pure aqueous solutions. The relative thermal stabilities of glutamic acid, glycine, and phenylalanine vary in the Recent sediment but are uniform in the Miocene rock.

Amino acids may occur in both proteins and humic complexes in the Recent sediment, while they are probably only present in stabilized organic substances in the Miocene rock. Thermal decomposition of protein amino acids may be affected by surface catalysis in the Recent sediment. The apparent activation energy for the decomposition of alanine in this sediment is 8400 calories per mole. Yields of amino compounds from the heated sediments are not affected by thermal decomposition only.

Amino acids in sediments may only be useful for geothermometry in a very general way.

A better picture of the amino acid content of older sedimentary rocks may be obtained if these sediments are heated in a bomb with H2O at temperatures around 150°C prior to HCl hydrolysis.

Leucine-isoleucine ratios may prove to be useful as indicators of amino acid sources or for evaluating the fractionation of these substances during diagenesis. Leucine-isoleucine ratios of the Recent and Miocene sediments and humic acids are identical. The humic acids may have a continental source.

The carbon-nitrogen and carbon-hydrogen ratios of sediments and humic acids increase with heating time and temperature. Ratios comparable to those in some kerogens are found in the severely heated Miocene sediment and humic acid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trace elements associated with organic subfractions (humic, fulvic, and non-humic substances) were identified for seven core sediments from Lake Mariut, Egypt. Results indicated that the amounts of trace metals in humic acid and non-humic substances decreased in the following order: Zn>Cu>Pb>Cr>Cd, while in fulvic acid the order the order was Cu>Zn>Pb>Cr>Cd. There is a higher contribution of Zn, Pb, Cu and Cr in humic acid compared to fulvic acid in most samples. Slight changes in the amounts of cadmium bounded with humic and fulvic acids was also found.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The persistence time and risk of microcystin-RR (MC-RR) in cropland via irrigation were investigated under laboratory conditions. In order to evaluate the efficiency of the potential adsorption and biodegradation of MC-RR in cropland and the persistence time of MC-RR for crop irrigation, high performance liquid chromatography (HPLC) was used to quantify the amount of MC-RR in solutions. Our study indicated that MC-RR could be adsorbed and biodegraded in cropland soils. MC-RR at 6.5 mg/L could be completely degraded within 6 days with a lag phase of 1 - 2 days. In the presence of humic acid, the same amount of MC-RR could be degraded within 4 days without a lag phase. Accordingly, the persistence time of MC-RR in cropland soils should be about 6 days. This result also suggested the beneficial effects of the organic fertilizer utilization for the biodegradation of MC-RR in cropland soils. Our studies also demonstrated that MC-RR at low concentration (< 10 mu g/L) could accelerate the growth of plants, while high concentration of MC-RR (> 100 mu g/L) significantly inhibited the growth of plants. High sensitivity of the sprouting stage plants to MC-RR treatments as well as the strong inhibitory effects resulting from prolonged irrigation further indicated that this MC-RR growth-inhibition may vary with the duration of irrigation and life stage of the plants. (c) 2007 Published by Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photolysis of microcystins by UV irradiation and the effects of different environmental factors on efficiency of UV degradation were studied. The results indicated that the rates of the photolytical degradation reactions of microcystin-LR and RR-follow pseudo-first-order kinetic process. The results also showed that the concentrations of two microcystin variants decreased significantly by UV-C Irradiation; the wavelength and intensitiy of UV irradiation are two very important factors affecting the rate of degradation; temperature and pH value could also affect the half life of degradation rates. When irradiated by weaker UV-Iight, isomerization could be detected in the course of photolytical degradation. The concentrations of two isomers transformed from microcystin-LR reached its maximum at the third minute and decreased with the time afterwards. To simulate photolysis of microcystins in the field water body, microcystins with low concentration were used. It was found that UV-C illumination was capable of decomposing over 95% of microcystins within 40 min. In the presence of humic substances the photodecomposition slowed down to a certain extent. These results are valuable in using UV irradiation for elimination microcystins from raw water.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

砷是毒性最强的元素之一,水体中砷的污染己经引起人们广泛的关注。我国的新疆、内蒙、山西和台湾等省和地区地下水砷含量严重超标。全球共有5,000多万人遭受高砷饮用水的威胁,其中中国有1,500多万,是饮用水砷污染最严重的国家之一。WHO推荐饮用水砷的最高允许浓度从原来的50 µg•L-1已降至10 µg•L-1。更为严格的砷卫生标准的颁布,对作为饮用水源的地下水中的砷去除工艺提出了更高的要求。吸附法除砷比膜法、混凝法和离子交换法更安全、简便,是砷去除工艺中最有效的方法之一。 首先,本研究通过优化制备条件(包括炭种类的选择、炭的粒径大小、还原剂的浓度及滴定速率、反应温度、铁盐的种类及浓度、分散剂的比例及浓度),制备了负载型纳米铁。考虑到砷的去除效率、工程应用的可行性以及经济性,最优的制备条件如下:选用粒径为20~40目煤质炭,在室温、一定的分散剂比例及浓度,0.2 M KBH4滴速为20 d•min-1时所制备的Fe/炭为82.0 mg•g-1;纳米铁在活性炭孔内呈针状,其直径为30~500 nm,长度为1,000~2,000 nm。绝大多数的铁都负载到活性炭内部,这在处理水时铁不流失很重要。 其次,利用制备的负载型纳米铁作吸附载体,进行了饮用水中As(Ⅴ)的吸附去除实验。研究了该吸附剂对As(Ⅴ)的吸附等温线、动力学以及影响动力学的各种因素(包括As(Ⅴ)的不同初始浓度、吸附剂用量、pH值、共存离子和不同温度)、pH值、共存离子等环境条件对As(Ⅴ)去除的影响;以及吸附剂的再生及再生后的吸附效率等。研究发现在前12 h内吸附较快,72 h时达到了平衡。用Langmuir 吸附等温式估算出As(Ⅴ)的吸附量为12.0 mg•g-1。该吸附剂在pH 6.5, (25±2)℃, As(Ⅴ)初始浓度为2 mg•L-1,吸附剂用量为1.0 g•L-1时,As(Ⅴ)的去除率为75.2%;当把吸附剂的用量增加到1.5 g•L-1时,As(Ⅴ)的去除率可达99.9%以上。吸附剂可以用0.1M的NaOH浸泡12 h后即可再生,再生效率较高。常见的阴离子中PO43-、SiO32-对As(Ⅲ)的去除抑制较大,而SO42-、CO32-、C2O42-等离子对砷的去除影响较小。Fe2+对As(Ⅲ)的吸附抑制作用较大而其它阳离子影响不大。吸附剂可用0.1 M NaOH 有效再生,并且具有良好的机械性能。实验室初步实验数据表明,该吸附剂对饮用水除砷具有较好的应用前景。 第三,利用实验室制备的负载型纳米铁对饮用水中As(Ⅲ)的吸附去除也进行了研究。考察了吸附等温线、动力学以及影响动力学的各种因素、pH值、共存离子等环境条件对As(Ⅲ)去除的影响;以及吸附剂的再生及再生后的吸附效率等。研究发现,该吸附剂在pH 6.5, (25±2)℃, As(Ⅲ)初始浓度为2 mg•L-1,吸附剂用量为1.0 g•L-1时, 对As(Ⅲ)的去除率为99.8%;其吸附容量为1.996mg•g-1。吸附过程中部分As(Ⅲ)被氧化。与As(Ⅴ)的吸附相比,该吸附剂对As(Ⅲ)的效率比较高-而常见的其它除砷吸附剂如载铁纤维棉等,对As(Ⅴ)的效率比As(Ⅲ)高,为有效去除As(Ⅲ),常常需要专门加上氧化这一过程。 最后,利用负载型纳米铁对饮用水中As(Ⅲ) 的氧化性能进行考察,发现该吸附剂不但能够有效吸附去除饮用水中的砷,而且还能把As(Ⅲ)有效地氧化为As(Ⅴ)。经过对吸附剂的构成组分分析发现,活性炭表面因富含多种官能团而对三价砷的氧化作用最大;其次是纳米铁也能把As(Ⅲ)氧化为As(Ⅴ)。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

沉积物中Cd的赋存形态对其生物有效性的影响十分显著。在水生环境中,Cd究竟结合于沉积物中的何种组分在很大程度上决定了它能否被生物所吸收。本文利用颗粒物悬浮系统研究了沉积物中Cd的赋存形态对其在文蛤体内富集速率的影响。 对沉积物中三种典型矿物上附着的Cd(氢氧化铁结合态,氢氧化铝结合态,二氧化锰结合态)的生物有效性进行了比较,结果表明,在Cd浓度为70 mg/kg时,22 d富集实验中氢氧化铁结合态和氢氧化铝结合态Cd在文蛤体内均没有明显的积累,而二氧化锰结合态Cd在文蛤体内有明显的富集,其富集速率为0.0094±0.0010 μg /g d (r2 = 0.8539, p<0.0001)。在Cd浓度为140mg/kg时,氢氧化铁结合态Cd仍然无法被文蛤吸收,氢氧化铝和二氧化锰结合态Cd则可以被文蛤富集,其富集速率分别为0.0166±0.0017 μg/gd和0.0248±0.0017 μg/gd。不同赋存形态Cd的生物有效性表现为:Cd-MnO2> Cd-Al(OH)3> Cd-Fe(OH)3。对于不同赋存形态的Cd,吸收效率(AE)和摄食率(IR)的差异导致了其生物有效性的不同。 本文进一步考察了作为沉积物中Cd生物有效性的两种主要控制组分——氢氧化铁和颗粒态腐殖酸上赋存的Cd在文蛤体内的富集规律。实验结果表明,氢氧化铁(Fe(OH)3)和腐殖酸(HA)上附着的Cd在文蛤体内的富集规律存在显著差异。在实验设置的低Cd浓度组中(如70mg/kg和140 mg/kg),Cd-HA的生物有效性高于Cd-Fe(OH)3,而在高镉浓度组中(280 mg/kg),Cd-Fe(OH)3更易于在文蛤体内富集。生物对于污染物的响应(如及时的调整摄食消化策略)对于污染物在生物体内的富集影响十分显著,而这种“生物响应”在一定程度上可能在生物体内污染物浓度达到一定阈值后才会被引发。实验进一步表明Cd在腐殖酸不同组分之间的分配对其在文蛤体内的积累规律具有显著影响。相比于溶解态的腐殖酸-Cd污染物,文蛤对颗粒态腐殖酸上结合的Cd的富集具有更强的控制作用。 与无机颗粒物相比,双壳类生物对有机颗粒物的消化更为剧烈,通常认为有机物质上结合的污染物生物有效性较高。然而,本实验结果显示,当体内污染物浓度达到一定水平时,双壳类生物可以通过调节颗粒物在体内的消化过程控制重金属在生物体内的富集。在长期暴露过程中,结合与无机颗粒物上的污染物可能更容易在生物体内富集到比较高的水平

Relevância:

80.00% 80.00%

Publicador:

Resumo:

天然溶解有机质(natural dissolved organic matter,DOM)是由动植物残体经过复杂的物理、化学和生物过程形成的高分子有机混合物,它广泛分布于水体、土壤和沉积物中。DOM的结构十分复杂,分子量从几百到几十万不等,元素组成和化学结构随时空和来源不同而变化。腐殖物质是DOM的主要组成部分,以溶解有机碳计约占DOM总量的50%~80%。腐殖物质可以分为:富里酸(fulvic acid, FA任何pH值条件下都溶于水),腐殖酸(humic acid,HA在pH 1时不溶于水)和胡敏素(humin,任何pH条件下都不溶于水)。 DOM能影响许多生物地球化学过程。例如DOM是一个重要的碳汇,它能影响微生物的食物链和全球碳循环;DOM和营养元素含量、食物链结构等一起决定水生生态系统的属性和发展动态;它还能吸收自然光,从而影响紫外线在水中的穿透能力和浮游植物的光合作用;DOM含有多种弱酸和弱碱官能团,是天然水体pH的调节剂和控制因素;DOM和痕量金属离子或有机污染物发生作用,从而影响它们的形态、毒性、迁移转化和生物有效性;在饮用水消毒过程中,DOM能生成致癌物三卤甲烷和其它消毒副产物。 天然水体中的痕量金属离子(如Cu2+和Hg2+)主要以DOM络合态存在。在海水中DOM控制铜的主要存在形态;在淡水中 90%以上的铜离子与DOM发生配位。通过配位作用DOM能抑制浮游生物对Hg的吸收,增加鱼类对Hg的蓄积。目前,人们对金属离子在环境中的迁移转化机理的理解还不够深入,尤其是对有机质参与下的有毒重金属循环还缺乏必要地认识。条件稳定常数是描述重金属离子与DOM配位能力的基本参数。前人运用多种手段对DOM与金属离子的结合能力进行了研究,主要包括:离子选择性电极法、溶出伏安法、超滤及荧光淬灭滴定法等。紫外吸收滴定法可用于研究单一有机化合物和金属离子的相互作用,在这一领域的应用尚未报道。本文首次将紫外吸收滴定法应用于测定DOM与Cu2+和Hg2+的条件稳定常数。实验表明紫外吸收滴定法迅速、简便、可望成为研究DOM和痕量金属离子相互作用的有力工具。 药品和个人护理品(pharmaceuticals and personal care products,PPCPs)在环境中普遍存在。有证据表明,环境中的有些PPCPs能对生物体产生影响,如改变生物体的性别比例,影响植物生长,动物幼虫的孵化,甚至具有明显的致畸效应。卡马西平(Carbamazepine,CBZ)是一种常用的抗癫痫、止痛药物和抗抑郁药。毒理学实验表明,环境中的CBZ能严重影响鱼、蚌等水生生物的免疫和循环系统。CBZ使用量大,在环境中含量高,在地下水渗透过程和常规污水处理中保持稳定,因此CBZ成为衡量人类活动和污水处理工艺效率的标志物。但是目前人们对CBZ的环境地球化学循环知之甚少。DOM能与许多有机污染物发生相互作用,从而影响它们的生物环境地球化学行为,但DOM对CBZ的影响尚未见报道。本论文利用三维荧光光谱技术和同步荧光光谱技术,研究了DOM与CBZ的结合强度、结合类型、影响因素,并且初步总结了DOM对CBZ环境地球化学循环的影响。为理解其它PPCPs的生物地球化学循环,预测它们的迁移转化、归宿和环境毒性提供参考。 本文运用紫外吸收滴定法和荧光淬灭滴定法研究了不同来源的DOM和金属离子(Cu2+和Hg2+)的相互作用,运用三维荧光光谱法和同步扫描荧光光谱法研究了DOM和卡马西平的相互作用。主要成果简述如下: 1、本文首次将紫外吸收滴定法应用于测定金属离子和DOM的条件稳定常数,结果表明紫外吸收滴定法操作更简便、测定迅速、仪器普及率高,可在DOM含量很低(约10-5 ~ 10-7 mol/L)的情况下也可以直接进行测定,不必进行复杂的预富集。可望成为DOM和痕量有毒重金属离子相互作用的有力工具。 2、重金属离子(Hg2+和Cu2+)与DOM的羧基和酚羟基等基团配位。配位后电子的离域性增加,导致紫外吸收增加。与此同时配位后分子极性的改变和铜离子顺磁性作用,引起DOM荧光淬灭。在Cu2+和Hg2+的滴定过程中,紫外吸光度和荧光强度之间呈极显著线性负相关关系(R2=0.99,P<0.001)。这说明荧光和紫外从不同侧面揭示了DOM和金属离子的配位作用。 3、紫外吸收滴定法和荧光淬灭滴定法测定其条件稳定常数(log K)一致,介于3.5 ~ 5.5之间。强配位作用是DOM影响有毒重金属离子环境地球化学行为的根源。研究还表明配位作用的强弱受DOM来源和体系pH的影响。 4、 CBZ和DOM能发生强烈的相互作用,结合常数(log K)介于3.41 ~ 5.04之间。DOM能明显减少游离态CBZ的浓度,提高CBZ溶解度和迁移转化能力。这对认识CBZ和其它PPCPs的环境地球化学循环及其影响因素具有指导意义。 5、荧光光谱研究表明CBZ对DOM发射的荧光具有明显的猝灭作用,其猝灭机理为静态猝灭。疏水作用是CBZ和DOM之间的主要作用力。DOM-CBZ受pH值的影响不大, Cu2+对CBZ和DOM的结合有一定的影响。