736 resultados para Approaches to learning
Resumo:
In this paper, we present a new course entitled “Biomimicry: from life to nanotechnological innovations” at the Mines Nancy Engineering School, Nancy, France, and explain how we developed a specific curriculum covering biomimicry. We discuss strategies that can be followed by teachers to explain selected contents in the multi-disciplinary field of biomimicry and/or bioinspiration to undergraduate students and how practical classroom activities can be conducted as individual or team work. We hope that sharing our experience will help teachers and senior researchers disseminate useful concepts and real examples of biomimetic principles and tools for the development of new materials, new/improved design and fabrication strategies, and innovation methodologies.
Resumo:
Secondary metabolites from plants are important sources of high-value chemicals, many of them being pharmacologically active. These metabolites are commonly isolated through inefficient extractions from natural biological sources and are often difficult to synthesize chemically. Therefore, their production using engineered organisms has lately attracted an increased attention. Curcuminoids, an example of such metabolites, are produced in Curcuma longa and exhibit anti-cancer and anti-inflammatory activities. Herein we report the construction of an artificial biosynthetic pathway for the curcuminoids production in Escherichia coli. Different 4-coumaroyl-CoA ligases (4CL) and polyketide synthases (diketide-CoA synthase (DCS), curcumin synthase (CURS) and curcuminoid synthase) were tested. The highest curcumin production (70 mg/L) was obtained by feeding ferulic acid and with the Arabidopsis thaliana 4CL1 and C. longa DCS and CURS enzymes. Other curcuminoids (bisdemethoxy- and demethoxycurcumin) were also produced by feeding coumaric acid or a mixture of coumaric and ferulic acids, respectively. Curcuminoids, including curcumin, were also produced from tyrosine through the caffeic acid pathway. To produce caffeic acid, tyrosine ammonia lyase and 4-coumarate 3-hydroxylase were used. Caffeoyl-CoA O-methyltransferase was used to convert caffeoyl-CoA to feruloyl-CoA. This pathway represents an improvement of the curcuminoids heterologous production. The construction of this pathway in another model organism is being considered, as well as the introduction of alternative enzymes.
Resumo:
Dissertation for Ph.D. degree in Biomedical Engineering.
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2011
Resumo:
Sensory cortex, neuroprosthetics, brain-machine-interfaces, neurodynamics, learning, perception, embodied cognition
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2012
Resumo:
We review recent likelihood-based approaches to modeling demand for medical care. A semi-nonparametric model along the lines of Cameron and Johansson's Poisson polynomial model, but using a negative binomial baseline model, is introduced. We apply these models, as well a semiparametric Poisson, hurdle semiparametric Poisson, and finite mixtures of negative binomial models to six measures of health care usage taken from the Medical Expenditure Panel survey. We conclude that most of the models lead to statistically similar results, both in terms of information criteria and conditional and unconditional prediction. This suggests that applied researchers may not need to be overly concerned with the choice of which of these models they use to analyze data on health care demand.
Resumo:
T-cell vaccination may prevent or treat cancer and infectious diseases, but further progress is required to increase clinical efficacy. Step-by-step improvements of T-cell vaccination in phase I/II clinical studies combined with very detailed analysis of T-cell responses at the single cell level are the strategy of choice for the identification of the most promising vaccine candidates for testing in subsequent large-scale phase III clinical trials. Major aims are to fully identify the most efficient T-cells in anticancer therapy, to characterize their TCRs, and to pinpoint the mechanisms of T-cell recruitment and function in well-defined clinical situations. Here we discuss novel strategies for the assessment of human T-cell responses, revealing in part unprecedented insight into T-cell biology and novel structural principles that govern TCR-pMHC recognition. Together, the described approaches advance our knowledge of T-cell mediated-protection from human diseases.
Resumo:
To a large extent, control of malaria vectors relies on the elimination of breeding sites and the application of chemical agents. There are increasing problems associated with the use of synthetic insecticides for vector control, including the evolution of resistance, the high cost of developing and registering new insecticides and an awareness of pollution from insecticide residues. These factors have stimulated interest in the application of molecular biology to the study of mosquito vectors of malaria; focussing primarily on two aspects. First, the improvement of existing control measures through the development of simplified DNA probe systems suitable for identification of vectors of malaria. The development of synthetic, non-radioactive DNA probes suitable for identification of species in the Anopheles gambiae complex is described with the aim of defining a simplified methodology wich is suitable for entomologist in the field. The second aspect to be considered is the development of completely novel strategies through the development of completely novel strategies through the genetic manipulation of insect vectors of malaria in order to alter their ability to transmit the disease. The major requirements for producing transgenic mosquitoes are outlined together with the progress wich has been made to date and discussed in relation to the prospects which this type of approach has for the future control of malaria.
Resumo:
The development of additional methods for detecting and identifuing Babesia and Plasmodium infections may be useful in disease monitoring, management and control efforts. To preliminarily evaluate sunthetic peptide-based serodiagnosis, a hydrophilic sequence (DDESEFDKEK)was selected from published BabR gene of B. bovis. Immunization of rabbits and cattle with the hemocyanin-conjugated peptide elicited antibody responses that specifically detected both P. falciparum and B. bovis antigens by immunofluorescence and Western blots. Using a dot-ELISA with this peptide, antisera from immunized and naturally-infected cattle, and immunized rodents, were specifically detected. Reactivity was weak and correlated with peptide immunization or infection. DNA-based detection using repetitive DNA was species-specific in dot-blot formats for B. bovis DNA, and in both dot-blot and in situ formats for P. falciparum; a streamlined enzymelinked synthetic DNA assay for P. falciparum detected 30 parasites/mm(cúbicos) from patient blood using either colorimetric (2-15 h color development) or chemiluminescent detection (0.5-6-min. exposures). Serodiagnostic and DNA hybridization methods may be complementary in the respective detection of both chronic and acute infections. However, recent improvements in the polymerase chain reaction (PCR) make feasible a more sensitive and uniform approach to the diagnosis of these and other infectious disease complexes, with appropriate primers and processing methods. An analysis of ribosomal DNA genes of Plasmodium and Toxoplasma identified Apicomplexa-conserved sequence regions. Specific and distinctive PCR profiles were obtained for primers spanning the internal transcribed spacer locus for each of several Plasmodium and Babesia species.
Resumo:
This paper describes new approaches to social and economic research being developed by the Social and Economic Research component of the Special Programme for Research and Trainning in Tropical Diseases of the World Health Organization. One of these is a study to acess the possibility of identifying high risk communities for urinary schistosomiasis through a "mailed"questionaire approach distributed through an existing administrative system, thereby eliminating the need for face-to-face interviews by the research or disease control team. This approach, developed by the Swiss Tropical Institute in Ifakara, Tanzania, i s currently being tested in seven other African countries. The paper also describes a change of emphasis of economic research on schistosomiasis, focusing on the intra-household effects of the disease on rural households, rather than, as previously done, studying the impact of the disease on the productivity of individual wage labourers. Other priorities involve the identification of epidemiological information neede for improoved decision-making regarding acceptable treatment strategies in endemic areas with limited financial capacity, as well as research on how the adverse effects of economic development projects can be alleviated.
Resumo:
The present paper reviews our recent data concerning the use of immunological methods employing monoclonal antibodies and synthetic peptides to study malaria transmission and immunity and to diagnose plasmodial infection. As concerns malaria transmission, we studied the main vectors of human malaria and the plasmodial species transmitted in endemic areas of Rondônia state, Brazil. The natural infection on anopheline was evaluated by immunoradiometric assay (IRMA) using monoclonal antibodies to an immunodominant sporozoite surface antigen (CS protein) demonstrated to be species specific. Our results showed that among six species of Anopheles found infected, An. darlingi was the main vector transmitting Plasmodium falciparum and P. vivax malaria in the immediate vicinity of houses. In order to assess the level of anti-CS antibodies we studied, by IRMA using the synthetic peptide corresponding to the repetitive epitope of the sporozoite CS protein, sera of individuals living in the same areas where the entomological survey has been performed. In this assay the prevalence of anti-CS antibodies was very low and did not reflect the malaria transmission rate in the studied areas. In relation to malaria diagnosis, a monoclonal antibody specific to an epitope of a 50 kDa exoantigen, the major component of supernatant collected at the time of schizont rupture, was used as a probe for the detection of P. falciparum antigens. This assay seemed to be more sensitive than parasitological examination for malaria diagnosis since it was able to detect plasmodial antigens in both symptomatic and asymtomatic individuals with negative thick blood smear at different intervals after a last parasitologically confirmed confirmed attack of malaria.
Resumo:
This paper reviews three different approaches to modelling the cost-effectiveness of schistosomiasis control. Although these approaches vary in their assessment of costs, the major focus of the paper is on the evaluation of effectiveness. The first model presented is a static economic model which assesses effectiveness in terms of the proportion of cases cured. This model is important in highlighting that the optimal choice of chemotherapy regime depends critically on the level of budget constraint, the unit costs of screening and treatment, the rates of compliance with screening and chemotherapy and the prevalence of infection. The limitations of this approach is that it models the cost-effectiveness of only one cycle of treatment, and effectiveness reflects only the immediate impact of treatment. The second model presented is a prevalence-based dynamic model which links prevalence rates from one year to the next, and assesses effectiveness as the proportion of cases prevented. This model was important as it introduced the concept of measuring the long-term impact of control by using a transmission model which can assess reduction in infection through time, but is limited to assessing the impact only on the prevalence of infection. The third approach presented is a theoretical framework which describes the dynamic relationships between infection and morbidity, and which assesses effectiveness in terms of case-years prevented of infection and morbidity. The use of this model in assessing the cost-effectiveness of age-targeted treatment in controlling Schistosoma mansoni is explored in detail, with respect to varying frequencies of treatment and the interaction between drug price and drug efficacy.