955 resultados para Applied Load
Resumo:
Introduction: Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (Nmm−1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived froma single 2D radiographic image. Methods: 18 excised human femora had previously been quantitative computed tomography scanned, from which 2D BMD-equivalent radiographic images were derived, and mechanically tested to failure in a stance-loading configuration. A 3D proximal femur shape was generated from each 2D radiographic image and used to construct 3D-FEA models. Results: The coefficient of determination (R2%) to predict failure load was 54.5% for BMD and 80.4% for 3D-FEXI. Conclusions: This ex vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD. This approach may be readily extended to routine clinical BMD images derived by dual energy X-ray absorptiometry. Crown Copyright © 2009 Published by Elsevier Ltd on behalf of IPEM. All rights reserved
Resumo:
Inverse dynamics is the most comprehensive method that gives access to the net joint forces and moments during walking. However it is based on assumptions (i.e., rigid segments linked by ideal joints) and it is known to be sensitive to the input data (e.g., kinematic derivatives, positions of joint centres and centre of pressure, inertial parameters). Alternatively, transducers can be used to measure directly the load applied on the residuum of transfemoral amputees. So, the purpose of this study was to compare the forces and moments applied on a prosthetic knee measured directly with the ones calculated by three inverse dynamics computations - corresponding to 3 and 2 segments, and « ground reaction vector technique » - during the gait of one patient. The maximum RMSEs between the estimated and directly measured forces (i.e., 56 N) and moment (i.e., 5 N.m) were relatively small. However the dynamic outcomes of the prosthetic components (i.e., absorption of the foot, friction and limit stop of the knee) were only partially assessed with inverse dynamic methods.
Resumo:
Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (N mm− 1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived from a single 2D radiographic image. This ex-vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD.
Resumo:
The purpose of this proof-of-concept study was to determine the relevance of direct measurements to monitor the load applied on the osseointegrated fixation of transfemoral amputees during static load bearing exercises. The objectives were (A) to introduce an apparatus using a three-dimensional load transducer, (B) to present a range of derived information relevant to clinicians, (C) to report on the outcomes of a pilot study and (D) to compare the measurements from the transducer with those from the current method using a weighing scale. One transfemoral amputee fitted with an osseointegrated implant was asked to apply 10 kg, 20 kg, 40 kg and 80 kg on the fixation, using self-monitoring with the weighing scale. The loading was directly measured with a portable kinetic system including a six-channel transducer, external interface circuitry and a laptop. As the load prescribed increased from 10 kg to 80 kg, the forces and moments applied on and around the antero-posterior axis increased by 4 fold anteriorly and 14 fold medially, respectively. The forces and moments applied on and around the medio-lateral axis increased by 9 fold laterally and 16 fold from anterior to posterior, respectively. The long axis of the fixation was overloaded and underloaded in 17 % and 83 % of the trials, respectively, by up to ±10 %. This proof-of-concept study presents an apparatus that can be used by clinicians facing the challenge of improving basic knowledge on osseointegration, for the design of equipment for load bearing exercises and for rehabilitation programs.
Resumo:
Falling represents a health risk for lower limb amputees fitted with an osseointegrated fixation mainly because of the potential damage to the fixation. The purpose of this study was to characterise a real forward fall that occurred inadvertently to a transfemoral amputee fitted with an osseointegrated fixation while attending a gait measurement session to assess the load applied on the residuum. The objective was to analyse the load applied on the fixation with an emphasis on the sequence of events, the pattern and the magnitude of the forces and moments. The load was measured directly at 200 Hz using a six-channel transducer. Complementary video footage was also studied. The fall was divided into four phases: loading (240 ms), descent (620 ms), impact (365 ms) and recovery (2495 ms). The main impact forces and moments occurred 870 ms and 915 ms after the heel contact, and corresponded to 133 %BW and 17 %BWm, or 1.2 and 11.2 times the maximum forces and moments applied during the previous steps of the participant, respectively. This study provided key information to engineers and clinicians facing the challenge to design equipment, and rehabilitation and exercise programs to restore safely the locomotion of lower limb amputees.
Resumo:
Multi-level concrete buildings requrre substantial temporary formwork structures to support the slabs during construction. The primary function of this formwork is to safely disperse the applied loads so that the slab being constructed, or the portion of the permanent structure already constructed, is not overloaded. Multi-level formwork is a procedure in which a limited number of formwork and shoring sets are cycled up the building as construction progresses. In this process, each new slab is supported by a number of lower level slabs. The new slab load is, essentially, distributed to these supporting slabs in direct proportion to their relative stiffness. When a slab is post-tensioned using draped tendons, slab lift occurs as a portion of the slab self-weight is balanced. The formwork and shores supporting that slab are unloaded by an amount equivalent to the load balanced by the post-tensioning. This produces a load distribution inherently different from that of a conventionally reinforced slab. Through , theoretical modelling and extensive on-site shore load measurement, this research examines the effects of post-tensioning on multilevel formwork load distribution. The research demonstrates that the load distribution process for post-tensioned slabs allows for improvements to current construction practice. These enhancements include a shortening of the construction period; an improvement in the safety of multi-level form work operations; and a reduction in the quantity of form work materials required for a project. These enhancements are achieved through the general improvement in safety offered by post-tensioning during the various formwork operations. The research demonstrates that there is generally a significant improvement in the factors of safety over those for conventionally reinforced slabs. This improvement in the factor of safety occurs at all stages of the multi-level formwork operation. The general improvement in the factors of safety with post-tensioned slabs allows for a shortening of the slab construction cycle time. Further, the low level of load redistribution that occurs during the stripping operations makes post-tensioned slabs ideally suited to reshoring procedures. Provided the overall number of interconnected levels remains unaltered, it is possible to increase the number of reshored levels while reducing the number of undisturbed shoring levels without altering the factors of safety, thereby, reducing the overall quantity of formwork and shoring materials.
Resumo:
System analysis within the traction power system is vital to the design and operation of an electrified railway. Loads in traction power systems are often characterised by their mobility, wide range of power variations, regeneration and service dependence. In addition, the feeding systems may take different forms in AC electrified railways. Comprehensive system studies are usually carried out by computer simulation. A number of traction power simulators have been available and they allow calculation of electrical interaction among trains and deterministic solutions of the power network. In the paper, a different approach is presented to enable load-flow analysis on various feeding systems and service demands in AC railways by adopting probabilistic techniques. It is intended to provide a different viewpoint to the load condition. Simulation results are given to verify the probabilistic-load-flow models.
Resumo:
A Flat Bed Rail Wagon (FBRW) has been proposed as an alternative solution for replacing bridges on low traffic volume roads. The subject matter for this paper is to investigate the impediment to load transfer from cross girders to main girder, through visually identifiable structural flaws. Namely, the effect of having large openings at close proximity to the connection of the main girder to the cross girder of a FBRW was examined. It was clear that openings locally reduce the section modulus of the secondary members; however it was unclear how these reductions would affect the load transfer to the main girder. The results are presented through modeling grillage action for which the loads applied onto the FBRW were distributed through cross girders to the main girder.
Resumo:
Background: In vitro investigations have demonstrated the importance of the ribcage in stabilising the thoracic spine. Surgical alterations of the ribcage may change load-sharing patterns in the thoracic spine. Computer models are used in this study to explore the effect of surgical disruption of the rib-vertebrae connections on ligament load-sharing in the thoracic spine. Methods: A finite element model of a T7-8 motion segment, including the T8 rib, was developed using CT-derived spinal anatomy for the Visible Woman. Both the intact motion segment and the motion segment with four successive stages of destabilization (discectomy and removal of right costovertebral joint, right costotransverse joint and left costovertebral joint) were analysed for a 2000Nmm moment in flexion/extension, lateral bending and axial rotation. Joint rotational moments were compared with existing in vitro data and a detailed investigation of the load sharing between the posterior ligaments carried out. Findings: The simulated motion segment demonstrated acceptable agreement with in vitro data at all stages of destabilization. Under lateral bending and axial rotation, the costovertebral joints were of critical importance in resisting applied moments. In comparison to the intact joint, anterior destabilization increases the total moment contributed by the posterior ligaments. Interpretation: Surgical removal of the costovertebral joints may lead to excessive rotational motion in a spinal joint, increasing the risk of overload and damage to the remaining ligaments. The findings of this study are particularly relevant for surgical procedures involving rib head resection, such as some techniques for scoliosis deformity correction.
Resumo:
The reconstruction of large defects (>10 mm) in humans usually relies on bone graft transplantation. Limiting factors include availability of graft material, comorbidity, and insufficient integration into the damaged bone. We compare the gold standard autograft with biodegradable composite scaffolds consisting of medical-grade polycaprolactone and tricalcium phosphate combined with autologous bone marrow-derived mesenchymal stem cells (MSCs) or recombinant human bone morphogenetic protein 7 (rhBMP-7). Critical-sized defects in sheep - a model closely resembling human bone formation and structure - were treated with autograft, rhBMP-7, or MSCs. Bridging was observed within 3 months for both the autograft and the rhBMP-7 treatment. After 12 months, biomechanical analysis and microcomputed tomography imaging showed significantly greater bone formation and superior strength for the biomaterial scaffolds loaded with rhBMP-7 compared to the autograft. Axial bone distribution was greater at the interfaces. With rhBMP-7, at 3 months, the radial bone distribution within the scaffolds was homogeneous. At 12 months, however, significantly more bone was found in the scaffold architecture, indicating bone remodeling. Scaffolds alone or with MSC inclusion did not induce levels of bone formation comparable to those of the autograft and rhBMP-7 groups. Applied clinically, this approach using rhBMP-7 could overcome autograft-associated limitations.
Resumo:
The effects of increased training (IT) load on plasma concentrations of lipopolysaccharides (LPS), proinflammatory cytokines, and anti-LPS antibodies during exercise in the heat were investigated in 18 male runners, who performed 14 days of normal training (NT) or 14 days of 20% IT load in 2 equal groups. Before (trial 1) and after (trial 2) the training intervention, all subjects ran at 70% maximum oxygen uptake on a treadmill under hot (35 degrees C) and humid (similar to 40%) conditions, until core temperature reached 39.5 degrees C or volitional exhaustion. Venous blood samples were drawn before, after, and 1.5 h after exercise. Plasma LPS concentration after exercise increased by 71% (trial 1, p < 0.05) and 21% (trial 2) in the NT group and by 92% (trial 1, p < 0.01) and 199% (trial 2, p < 0.01) in the IT group. Postintervention plasma LPS concentration was 35% lower before exercise (p < 0.05) and 47% lower during recovery (p < 0.01) in the IT than in the NT group. Anti-LPS IgM concentration during recovery was 35% lower in the IT than in the NT group (p < 0.05). Plasma interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha concentrations after exercise (IL-6, 3-7 times, p < 0.01, and TNF-alpha, 33%, p < 0.01) and during recovery (IL-6, 2-4 times, p < 0.05, and TNF-alpha, 30%, p < 0.01) were higher than at rest within each group. These data suggest that a short-term tolerable increase in training load may protect against developing endotoxemia during exercise in the heat.
Resumo:
Background: Adolescent idiopathic scoliosis (AIS) is a deformity of the spine, which may 34 require surgical correction by attaching a rod to the patient’s spine using screws 35 implanted in the vertebral bodies. Surgeons achieve an intra-operative reduction in the 36 deformity by applying compressive forces across the intervertebral disc spaces while 37 they secure the rod to the vertebra. We were interested to understand how the 38 deformity correction is influenced by increasing magnitudes of surgical corrective forces 39 and what tissue level stresses are predicted at the vertebral endplates due to the 40 surgical correction. 41 Methods: Patient-specific finite element models of the osseoligamentous spine and 42 ribcage of eight AIS patients who underwent single rod anterior scoliosis surgery were 43 created using pre-operative computed tomography (CT) scans. The surgically altered 44 spine, including titanium rod and vertebral screws, was simulated. The models were 45 analysed using data for intra-operatively measured compressive forces – three load 46 profiles representing the mean and upper and lower standard deviation of this data 47 were analysed. Data for the clinically observed deformity correction (Cobb angle) were 48 compared with the model-predicted correction and the model results investigated to 49 better understand the influence of increased compressive forces on the biomechanics of 50 the instrumented joints. 51 Results: The predicted corrected Cobb angle for seven of the eight FE models were 52 within the 5° clinical Cobb measurement variability for at least one of the force profiles. 53 The largest portion of overall correction was predicted at or near the apical 54 intervertebral disc for all load profiles. Model predictions for four of the eight patients 55 showed endplate-to-endplate contact was occurring on adjacent endplates of one or 56 more intervertebral disc spaces in the instrumented curve following the surgical loading 57 steps. 58 Conclusion: This study demonstrated there is a direct relationship between intra-59 operative joint compressive forces and the degree of deformity correction achieved. The 60 majority of the deformity correction will occur at or in adjacent spinal levels to the apex 61 of the deformity. This study highlighted the importance of the intervertebral disc space 62 anatomy in governing the coronal plane deformity correction and the limit of this 63 correction will be when bone-to-bone contact of the opposing vertebral endplates 64 occurs.
Resumo:
With new developments in battery technologies, increasing application of Battery Energy Storage System (BESS) in power system is anticipated in near future. BESS has already been used for primary frequency regulation in the past. This paper examines the feasibility of using BESS with load shedding, in application for large disturbances in power system. Load shedding is one of the conventional ways during large disturbances, and the performance of frequency control will increase in combination with BESS application. According to the latest news, BESS which are applied in high power side will be employed in practice in next 5 year. A simple low order SMR model is used as a test system, while an incremental model of BESS is applied in this paper. As continuous disturbances are not the main concern in this paper, df/dt is not considered in article.