951 resultados para Antinna Propagation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wave propagation and its frequency bandgaps in a parametrically modulated composite laminate are reported in this paper. The modulated properties under considerations are due to periodic microstructure, for example honeycomb core sandwich composite, which can be parameterized and homogenized in a suitable scale. Wave equations are derived by assuming a third-order shear deformation theory. Homogenization of the wave equations is carried out in the scale of wavelength. In-plane wave and flexural-shear wave dispersions are obtained for a range of values of a stiffness modulation coefficient (alpha). A clear pattern of stop-bands is observed for alpha >= 4. To validate the band-gap phenomena, we take recourse to time domain response obtained from finite element simulation. As predicted by the proposed analytical technique, a distinct correlation between the chosen frequency band and the simulated wave arrival time and amplitude reduction is found. This promises practical applications of the proposed analytical technique to designing parametrically modulated composite laminate for wave suppression. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a numerical method for modelling the elastic wave propagation in plates. The method is based on the partition of unity approach, in which the approximate spectral properties of the infinite dimensional system are embedded within the space of a conventional finite element method through a consistent technique of waveform enrichment. The technique is general, such that it can be applied to the Lagrangian family of finite elements with specific waveform enrichment schemes, depending on the dominant modes of wave propagation in the physical system. A four-noded element for the Reissner-indlin plate is derived in this paper, which is free of shear locking. Such a locking-free property is achieved by removing the transverse displacement degrees of freedom from the element nodal variables and by recovering the same through a line integral and a weak constraint in the frequency domain. As a result, the frequency-dependent stiffness matrix and the mass matrix are obtained, which capture the higher frequency response with even coarse meshes, accurately. The steps involved in the numerical implementation of such element are discussed in details. Numerical studies on the performance of the proposed element are reported by considering a number of cases, which show very good accuracy and low computational cost. Copyright (C)006 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study has been made of the problem of steady, one-dimensional, laminar flame propagation in premixed gases, with the Lewis number differing from (and equal to) unity. Analytical solutions, using the method of matched asymptotic expansions, have been obtained for large activation energies. Numerical solutions have been obtained for a wide range of the reduced activation temperature parameter (n {geometrically equal to} E/RTb), and the Lewis number δ. The studies reveal that the flame speed eigenvalue is linear in Lewis number for first order and quadratic in Lewis number for second order reactions. For a quick determination of flame speeds, with reasonable accuracy, a simple rule, expressing the flame speed eigenvalue as a function of the Lewis number and the centroid of the reaction rate function, is proposed. Comparisons have been made with some of the earlier works, for both first and second order reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The instability of coupled longitudinal and transverse electromagnetic modes associated with long wavelengths is studied in bounded streaming plasmas. The main conclusions are as follows: (i) For long waves for which O (k 2)=0, in the absence of relative streaming motion of electrons and ions and aωp/c<0.66, the whole spectrum of harmonic waves is excited due to finite temperature and boundary effects consisting of two subseries. One of these subseries can be identified with Tonks-Dattner resonance oscillations for the electrons, and arises primarily due to the electrons with frequencies greater than the electrostatic plasma frequency corresponding to the electron density in the midplane in the undisturbed state. The other series arises primarily due to ion motion. When aωp/c>0.66, in addition to the above spectrum of harmonic waves, the system admits an infinite number of growing and decaying waves. The instability associated with these modes is found to arise due to the interaction of the waves inside the plasma with the external electromagnetic field. (ii) For modes with comparatively shorter wavelengths for which O (k3)=0, the coupling due to finite temperature sets in, and it is found that the two series of harmonic waves obtained in (i) deriving energy from the transverse modes also become unstable. Thus, for these wavelengths the system admits three sets of growing and decaying modes, first two for all values of aωp/c and the third for (aωp/c) > 0.66. (iii) The presence of streaming velocities introduces various other coupling mechanisms, and we find that even for the wavelengths for which O (k2)=0, we get three sets of growing and decaying waves. The numerical values for the growth rates show that the streaming velocities enhance the growth rates of instability significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied in this paper the propagation of an isothermal shock in the radiative envelopes of the Bosman-Crespin model for a hot star and Boury’s model for a giant star. A spherically symmetric disturbance is supposed to be originated at or outside the surface of the convective core. We have used Whitham’s rule to study the variation in the shock strength and the shock velocity after modifying it for inclusion of pressure, energy and flux of radiation. We find the shock increases in strength as it propagates through the envelopes of decreasing density, pressure and temperature. The velocity of the shock decreases for very weak initial shock strengths, for intermediate initial shock strength it first decreases and then increases, while for large initial shock strength, it always increases. This aspect of the problem throws some light on the stability of the models under consideration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation of a shock wave of finite strength due to an explosion into inhomogeneous nongravitating and self-gravitating systems has been considered, using similarity principles, supposing that the density varies as an inverse power of distance from the centre of explosion. A large number of systems, characterised by different density exponents and different adiabatic coefficients of the gas have been considered for different shock strengths. The numerical integration from the shock inward has been continued to the surface of singularity where density tends to infinity and which acts like a piston in the self-gravitating case and to the surface where the velocity gradient tends to infinity in the nongravitating case. The effect of variation of shock strength, density exponent and adiabatic coefficient on the location of these singularities and on the distribution of flow parameters behind the shock has been studied. The initial energy of the system and the manner of release of the explosion energy influence strongly the flow behind the shock. The results have been graphically depicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the paper is to investigate the propagation of a pulse in a micropolar fluid contained in a visco-elastic membrane. It was undertaken with a view to study how closely we can approximate the flow of blood in arteries by the above model. We find that for large Reynolds number, the effect of micropolarity is hardly perceptible, whereas for small Reynolds numbers it is of considerable importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic absorption has been studied by the pulse technique in the binary mixtures of acetic acid in water, methyl and ethyl alcohols and covers a range of 2 to 26 Mc/s. The mixtures are studied from 0 to 100% by weight of the acid. In all the three mixtures, two relaxation processes are observed, the first occurring below the frequency range of the study. The second one occurs near 20 Mc/s in the acid-water mixtures and at much higher frequencies in the other cases. It is qualitatively explained that the monomer-dimer reaction of the acetic acid giving a relaxation near 1 Mc/s has shifted to a higher frequency when mixed in a solvent thus giving rise to a second relaxation in the mixtures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the pulse method in the range of 2 to 26Mc's the ultrasonic absorption, velocity and the adiabatic compressibility have been studied in eleven aqueous acetate solutions up to a concentration of 1 mole/litre. The substances studied are the acetates of lithium, sodium, potassium, ammonium, magnesium, calcium, strontium, barium, zinc, cadmium and lead. Absorption in mercuric acetate has been studied only at 2 and 6 Mc/s. Two regions of relaxation are noticed, one below 10 Mc/s and the other between 10 and 26 Mc/s. The first relaxation is ascribed to the dissociation reaction of the salt and the second one to the monomerdimer reaction of the acetic acid formed by the hydrolysis of the salt in water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a method is proposed for rolling contact fatigue crack propagation analysis using contact and fracture theories in conjunction with fatigue laws. The proposed method is used in the fatigue analysis of rocker and roller–rocker bearings of a railway open web girder bridge which is instrumented with strain gages. Using a contact algorithm based on the minimum energy principle for bodies in rolling contact with dry friction, the normal and tangential pressure distribution are computed. It is seen that the most critical location of a crack in bearings is at a point very close to the contact region, as expected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a method is proposed for rolling contact fatigue crack propagation analysis using contact and fracture theories in conjunction with fatigue laws. The proposed method is used in the fatigue analysis of rocker and roller-rocker bearings of a railway open web girder bridge which is instrumented with strain gages. Using a contact algorithm based on the minimum energy principle for bodies in rolling contact with dry friction, the normal and tangential pressure distribution are computed. It is seen that the most critical location of a crack in bearings is at a point very close to the contact region, as expected. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the design and development of a Fiber Bragg Grating (FBG) sensor system for monitoring tsunami waves generated in the deep ocean. An experimental setup was designed and fabricated to simulate the generation and propagation of a tsunami wave. The characteristics and efficiency of the developed FBG sensor was evaluated with a standard commercial Digiquartz sensor. For real time monitoring of tsunami waves, FBG sensors bonded to a cantilever is used and the wavelength shifts (Delta lambda(B)) in the reflected spectra resulting from the strain/pressure imparted on the FBGs have been recorded using a high-speed Micron Optics FBG interrogation system. The parameters sensed are the signal burst during tsunami generation and pressure variations at different places as the tsunami wave propagates away from the source of generation. The results obtained were compared with the standard commercial sensor used in tsunami detection. The observations suggest that the FBG sensor was highly sensitive and free from many of the constraints associated with the commercial tsunameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper,we present a belief propagation (BP) based algorithm for decoding non-orthogonal space-time block codes (STBC) from cyclic division algebras (CDA) having large dimensions. The proposed approachinvolves message passing on Markov random field (MRF) representation of the STBC MIMO system. Adoption of BP approach to decode non-orthogonal STBCs of large dimensions has not been reported so far. Our simulation results show that the proposed BP-based decoding achieves increasingly closer to SISO AWGN performance for increased number of dimensions. In addition, it also achieves near-capacity turbo coded BER performance; for e.g., with BP decoding of 24 x 24 STBC from CDA using BPSK (i.e.,n576 real dimensions) and rate-1/2 turbo code (i.e., 12 bps/Hz spectral efficiency), coded BER performance close to within just about 2.5 dB from the theoretical MIMO capacity is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, elastic wave propagation is studied in a nanocomposite reinforced with multiwall carbon nanotubes (CNTs). Analysis is performed on a representative volume element of square cross section. The frequency content of the exciting signal is at the terahertz level. Here, the composite is modeled as a higher order shear deformable beam using layerwise theory, to account for partial shear stress transfer between the CNTs and the matrix. The walls of the multiwall CNTs are considered to be connected throughout their length by distributed springs, whose stiffness is governed by the van der Waals force acting between the walls of nanotubes. The analyses in both the frequency and time domains are done using the wavelet-based spectral finite element method (WSFEM). The method uses the Daubechies wavelet basis approximation in time to reduce the governing PDE to a set of ODEs. These transformed ODEs are solved using a finite element (FE) technique by deriving an exact interpolating function in the transformed domain to obtain the exact dynamic stiffness matrix. Numerical analyses are performed to study the spectrum and dispersion relations for different matrix materials and also for different beam models. The effects of partial shear stress transfer between CNTs and matrix on the frequency response function (FRF) and the time response due to broadband impulse loading are investigated for different matrix materials. The simultaneous existence of four coupled propagating modes in a double-walled CNT-composite is also captured using modulated sinusoidal excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional (3-D) kinematical conservation laws (KCL) are equations of evolution of a propagating surface Omega(t) in three space dimensions. We start with a brief review of the 3-D KCL system and mention some of its properties relevant to this paper. The 3-D KCL, a system of six conservation laws, is an underdetermined system to which we add an energy transport equation for a small amplitude 3-D nonlinear wavefront propagating in a polytropic gas in a uniform state and at rest. We call the enlarged system of 3-D KCL with the energy transport equation equations of weakly nonlinear ray theory (WNLRT). We highlight some interesting properties of the eigenstructure of the equations of WNLRT, but the main aim of this paper is to test the numerical efficacy of this system of seven conservation laws. We take several initial shapes for a nonlinear wavefront with a suitable amplitude distribution on it and let it evolve according to the 3-D WNLRT. The 3-D WNLRT is a weakly hyperbolic 7 x 7 system that is highly nonlinear. Here we use the staggered Lax-Friedrichs and Nessyahu-Tadmor central schemes and have obtained some very interesting shapes of the wavefronts. We find the 3-D KCL to be suitable for solving many complex problems for which there presently seems to be no other method capable of giving such physically realistic features.