996 resultados para Antigens, Nuclear -- metabolism
Resumo:
The endocrine disruption hypothesis asserts that exposure to small amounts of some chemicals in the environment may interfere with the endocrine system and lead to harmful effects in wildlife and humans. Many of these chemicals may interact with members of the nuclear receptor superfamily. Peroxisome proliferator-activated receptors (PPARs) are such candidate members, which interact with many different endogenous and exogenous lipophilic compounds. More particularly, the roles of PPARs in lipid and carbohydrate metabolism raise the question of their activation by a sub-class of pollutants, tentatively named "metabolic disrupters". Phthalates are abundant environmental micro-pollutants in Europe and North America and may belong to this class. Mono-ethyl-hexyl-phthalate (MEHP), a metabolite of the widespread plasticizer di-ethyl-hexyl-phthalate (DEHP), has been found in exposed organisms and interacts with all three PPARs. A thorough analysis of its interactions with PPARgamma identified MEHP as a selective PPARgamma modulator, and thus a possible contributor to the obesity epidemic.
Resumo:
Plasmacytoid dendritic cells (pDCs) are specialized sensors of viral nucleic acids that initiate protective immunity through the production of type I interferons (IFNs). Normally, pDCs fail to sense host-derived self-nucleic acids but do so when self-nucleic acids form complexes with endogenous antimicrobial peptides produced in damaged skin. Whereas regulated expression of antimicrobial peptides may lead to pDC activation and protective immune responses to skin injury, overexpression of antimicrobial peptides in psoriasis drives excessive sensing of self-nucleic acids by pDCs resulting in IFN-driven autoimmunity. In skin tumors, pDCs are unable to sense self-nucleic acids; however, therapeutic activation of pDCs by synthetic nucleic acids or analogues can be exploited to generate antitumor immunity.
Resumo:
The goal of adoptive T cell therapy in cancer is to provide effective antitumor immunity by transfer of selected populations of tumor Ag-specific T cells. Transfer of T cells with high TCR avidity is critical for in vivo efficacy. In this study, we demonstrate that fluorescent peptide/MHC class I multimeric complexes incorporating mutations in the alpha3 domain (D227K/T228A) that abrogate binding to the CD8 coreceptor can be used to selectively isolate tumor Ag-specific T cells of high functional avidity from both in vitro expanded and ex vivo T cell populations. Sorting, cloning, and expansion of alpha3 domain mutant multimer-positive CD8 T cells enabled rapid selection of high avidity tumor-reactive T cell clones. Our results are relevant for ex vivo identification and isolation of T cells with potent antitumor activity for adoptive T cell therapy.
Resumo:
Engagement of TNF receptor 1 by TNFalpha activates the transcription factor NF-kappaB but can also induce apoptosis. Here we show that upon TNFalpha binding, TNFR1 translocates to cholesterol- and sphingolipid-enriched membrane microdomains, termed lipid rafts, where it associates with the Ser/Thr kinase RIP and the adaptor proteins TRADD and TRAF2, forming a signaling complex. In lipid rafts, TNFR1 and RIP are ubiquitylated. Furthermore, we provide evidence that translocation to lipid rafts precedes ubiquitylation, which leads to the degradation via the proteasome pathway. Interfering with lipid raft organization not only abolishes ubiquitylation but switches TNFalpha signaling from NF-kappaB activation to apoptosis. We suggest that lipid rafts are crucial for the outcome of TNFalpha-activated signaling pathways.
Resumo:
The reason why EBV-specific cellular immune responses are abnormal in multiple sclerosis (MS) patients is still missing. In this exploratory pilot study, we assessed IL-1beta, IL-2, IL-4, IL-6, IL-10, IL-17, IFN-gamma, TGF-beta1 and FOXP3 mRNA expression in EBV-stimulated highly differentiated T cells (T(HD)) of MS patients and healthy controls (HC). We found increased levels of IFN-gamma and IL-4 mRNA in CD8+ T(HD) cells of MS patients. All the other tested molecules were expressed similarly in MS patients and HC. Interestingly, increased IFN-gamma and IL-4 suggest that the control of EBV replication may be insufficient in MS patients.
Resumo:
Fas(Apo-1/CD95), a receptor belonging to the tumor necrosis factor receptor family, induces apoptosis when triggered by Fas ligand. Upon its activation, the cytoplasmic domain of Fas binds several proteins which transmit the death signal. We used the yeast two-hybrid screen to isolate Fas-associated proteins. Here we report that the ubiquitin-conjugating enzyme UBC9 binds to Fas at the interface between the death domain and the membrane-proximal region of Fas. This interaction is also seen in vivo. UBC9 transiently expressed in HeLa cells bound to the co-expressed cytoplasmic segment of Fas. FAF1, a Fas-associated protein that potentiates apoptosis (Chu et al. (1996) Proc. Natl. Acad. Sci. USA 92, 11894-11898), was found to contain sequences similar to ubiquitin. These results suggest that proteins related to the ubiquitination pathway may modulate the Fas signaling pathway.
Resumo:
Death receptors, such as Fas and tumor necrosis factor-related apoptosis-inducing ligand receptors, recruit Fas-associated death domain and pro-caspase-8 homodimers, which are then autoproteolytically activated. Active caspase-8 is released into the cytoplasm, where it cleaves various proteins including pro-caspase-3, resulting in apoptosis. The cellular Fas-associated death domain-like interleukin-1-beta-converting enzyme-inhibitory protein long form (FLIP(L)), a structural homologue of caspase-8 lacking caspase activity because of several mutations in the active site, is a potent inhibitor of death receptor-induced apoptosis. FLIP(L) is proposed to block caspase-8 activity by forming a proteolytically inactive heterodimer with caspase-8. In contrast, we propose that FLIP(L)-bound caspase-8 is an active protease. Upon heterocomplex formation, a limited caspase-8 autoprocessing occurs resulting in the generation of the p43/41 and the p12 subunits. This partially processed form but also the non-cleaved FLIP(L)-caspase-8 heterocomplex are proteolytically active because they both bind synthetic substrates efficiently. Moreover, FLIP(L) expression favors receptor-interacting kinase (RIP) processing within the Fas-signaling complex. We propose that FLIP(L) inhibits caspase-8 release-dependent pro-apoptotic signals, whereas the single, membrane-restricted active site of the FLIP(L)-caspase-8 heterocomplex is proteolytically active and acts on local substrates such as RIP.
Resumo:
The interaction of the T cell antigen receptor with a photoreactive antigenic peptide derivative bound covalently to the H-2Kd (Kd) molecule was studied by photoaffinity labeling on cloned, CD8 positive cytotoxic T lymphocytes. The Kd-restricted Plasmodium berghei circumsporozoite peptide 253-260 (YIPS-AEKI) was conjugated with iodo-4-azidosalicylic acid at the N terminus and with 4-azidobenzoic acid at the T cell receptor residue Lys-259. Cell-associated or soluble Kd molecules were photoaffinity-labeled with the peptide derivative by selective photoactivation of the N-terminal photoreactive group. Incubation of cell-associated or soluble covalent Kd-peptide derivative complexes (ligands) with cytotoxic T lymphocytes that recognized this peptide derivative and activation of the orthogonal photoreactive group resulted in specific photoaffinity labeling of the T cell receptor. The labeling was inhibitable by an anti-Kd antibody and was absent on Kd-restricted cytotoxic T lymphocytes of different specificity. The binding of the soluble ligand reached a maximum after 2-4 min at 37 degrees C, after 30 min at 18 degrees C, and after 3 h at 4 degrees C. In contrast, binding of the cell-associated ligand reached a transient maxima after 50 and 110 min at 37 and 18 degrees C, respectively. The degree of binding at 37 degrees C was approximately 30% lower than that at 18 degrees C. No binding took place at 4 degrees C. Inhibition studies with antibodies and drugs indicated that the binding of the cell-associated, but not the soluble ligand, was highly dependent on T cell-target cell conjugate formation, whereas the binding of the soluble ligand was greatly dependent on CD8.
Resumo:
Fas is a cell surface death receptor that signals apoptosis. Several proteins have been identified that bind to the cytoplasmic death domain of Fas. Fas-associated death domain (FADD), which couples Fas to procaspase-8, and Daxx, which couples Fas to the Jun NH(2)-terminal kinase pathway, bind independently to the Fas death domain. We have identified a 130-kD kinase designated Fas-interacting serine/threonine kinase/homeodomain-interacting protein kinase (FIST/HIPK3) as a novel Fas-interacting protein. Binding to Fas is mediated by a conserved sequence in the COOH terminus of the protein. FIST/HIPK3 is widely expressed in mammalian tissues and is localized both in the nucleus and in the cytoplasm. In transfected cell lines, FIST/HIPK3 causes FADD phosphorylation, thereby promoting FIST/HIPK3-FADD-Fas interaction. Although Fas ligand-induced activation of Jun NH(2)-terminal kinase is impaired by overexpressed active FIST/HIPK3, cell death is not affected. These results suggest that Fas-associated FIST/HIPK3 modulates one of the two major signaling pathways of Fas.
Resumo:
This review describes the advances in malaria antigen discovery and vaccine development using the long synthetic peptide platforms that have been made available during the past 5 years. The most recent technical developments regarding peptide synthesis with the optimized production of large synthetic fragments are discussed. Clinical trials of long synthetic peptides are also reviewed. These trials demonstrated that long synthetic peptides are safe and immunogenic when formulated with various adjuvants. In addition, long synthetic peptides can elicit an antibody response in humans and have demonstrated inhibitory activity against parasite growth in vitro. Finally, new approaches to exploit the abundance of genomic data and the flexibility and speed of peptide synthesis are proposed.
Resumo:
We designed a trap system to isolate different amino acid sequences which could target proteins to the cell surface via GPI anchor transfer. This selection procedure is based on the insertion of various sequences which regenerate a functional GPI anchor signal sequence and therefore provoke re-expression at the surface of a reporter molecule. Using this trap for cell surface targeting sequences, we could show the importance of the defined elements essential for GPI anchor addition. Such a system could be used for an exhaustive analysis of the carboxyl terminus structural requirements for GPI membrane anchoring.
Resumo:
The concentrations of the general neuronal markers D2-protein (N-CAM), D3-protein and neuron specific enolase (NSE) in reaggregating cultures of fetal rat telencephalon cells were affected by the presence of 30 nM triiodothyronine in the defined culture medium. The extent of normal developmental changes were enhanced by triiodothyronine, as demonstrated by crossed immunoelectrophoresis. From 13 to 19 days in culture, the concentration of D2-protein decreased, and the concentrations of both D3-protein and NSE increased. Nerve growth factor (NGF) was without effect on the development of these general neuronal markers. However, as shown previously both triiodothyronine and NGF increased the activity of choline acetyltransferase, a marker for cholinergic neurons. The results suggest an enhanced overall differentiation of several types of telencephalon neurons in the presence of triiodothyronine, and a specific stimulation of cholinergic telencephalon neurons by NGF.
Resumo:
TNF receptor family members fused to the constant domain of immunoglobulin G have been widely used as immunoadhesins in basic in vitro and in vivo research and in some clinical applications. In this study, we assemble soluble, high avidity chimeric receptors on a pentameric scaffold derived from the coiled-coil domain of cartilage oligomeric matrix protein (COMP). The affinity of Fas and CD40 (but not TNFR-1 and TRAIL-R2) to their ligands is increased by fusion to COMP, when compared to the respective Fc chimeras. In functional assays, Fas:COMP was at least 20-fold more active than Fas:Fc at inhibiting the action of sFasL, and CD40:COMP could block CD40L-mediated proliferation of B cells, whereas CD40:Fc could not. In conclusion, members of the TNF receptor family can display high specificity and excellent avidity for their ligands if they are adequately multimerized.