980 resultados para Anticorpo antitransglutaminase tecidual IgA
Resumo:
Secretory component (SC) represents the soluble ectodomain of the polymeric Ig receptor, a membrane protein that transports mucosal Abs across epithelial cells. In the protease-rich environment of the intestine, SC is thought to stabilize the associated IgA by unestablished molecular mechanisms. To address this question, we reconstituted SC-IgA complexes in vitro by incubating dimeric IgA (IgAd) with either recombinant human SC (rSC) or SC isolated from human colostral milk (SCm). Both complexes exhibited an identical degree of covalency when exposed to redox agents, peptidyl disulfide isomerase, and temperature changes. In cross-competition experiments, 50% inhibition of binding to IgAd was achieved at approximately 10 nM SC competitor. Western blot analysis of IgAd digested with intestinal washes indicated that the alpha-chain in IgAd was primarily split into a 40-kDa species, a phenomenon delayed in rSC- or SCm-IgAd complexes. In the same assay, either of the SCs was resistant to degradation only if complexed with IgAd. In contrast, the kappa light chain was not digested at all, suggesting that the F(ab')2 region was left intact. Accordingly, IgAd and SC-IgAd digestion products retained functionality as indicated by Ag reactivity in ELISA. Size exclusion chromatography under native conditions of digested IgAd and rSC-IgAd demonstrates that SC exerts its protective role in secretory IgA by delaying cleavage in the hinge/Fc region of the alpha-chain, not by holding together degraded fragments. The function of integral secretory IgA and F(ab')2 is discussed in terms of mucosal immune defenses.
Resumo:
Secretory immunoglobulin (Ig) A (SIgA) is essential in protecting mucosal surfaces. It is composed of at least two monomeric IgA molecules, covalently linked through the J chain, and secretory component (SC). We show here that a dimeric/polymeric IgA (IgA(d/p)) is more efficient when bound to SC in protecting mice against bacterial infection of the respiratory tract. We demonstrate that SC ensures, through its carbohydrate residues, the appropriate tissue localization of SIgA by anchoring the antibody to mucus lining the epithelial surface. This in turn impacts the localization and the subsequent clearance of bacteria. Thus, SC is directly involved in the SIgA function in vivo. Therefore, binding of IgA(d/p) to SC during the course of SIgA-mediated mucosal response constitutes a crucial step in achieving efficient protection of the epithelial barrier by immune exclusion.
Resumo:
Recombinant secretory immunoglobulin A containing a bacterial epitope in domain I of the secretory component (SC) moiety can serve as a mucosal delivery vehicle triggering both mucosal and systemic responses (Corthésy, B., Kaufmann, M., Phalipon, A., Peitsch, M., Neutra, M. R., and Kraehenbuhl, J.-P. (1996) J. Biol. Chem. 271, 33670-33677). To load recombinant secretory IgA with multiple B and T epitopes and extend its biological functions, we selected, based on molecular modeling, five surface-exposed sites in domains II and III of murine SC. Loops predicted to be exposed at the surface of SC domains were replaced with the DYKDDDDK octapeptide (FLAG). Another two mutants were obtained with the FLAG inserted in between domains II and III or at the carboxyl terminus of SC. As shown by mass spectrometry, internal substitution of the FLAG into four of the mutants induced the formation of disulfide-linked homodimers. Three of the dimers and two of the monomers from SC mutants could be affinity-purified using an antibody to the FLAG, mapping them as candidates for insertion. FLAG-induced dimerization also occurred with the polymeric immunoglobulin receptor (pIgR) and might reflect the so-far nondemonstrated capacity of the receptor to oligomerize. By co-expressing in COS-7 cells and epithelial Caco-2 cells two pIgR constructs tagged at the carboxyl terminus with hexahistidine or FLAG, we provide the strongest evidence reported to date that the pIgR dimerizes noncovalently in the plasma membrane in the absence of polymeric IgA ligand. The implication of this finding is discussed in terms of IgA transport and specific antibody response at mucosal surfaces.
Resumo:
Caprine and ovine IgA were identified by cross-reaction with anti-human and anti-bovine IgA sera in colostrum, mature milk, saliva, urine and serum. Secretory component (SC) was shown in the free form and associated with polymeric serum IgA in secretions. Mean molecular weights were determined for the IgA and the free secretory components. The high IgA content of saliva suggested that it was a major secretory immunoglobulin in these species. Traces of secretory IgA were also found in normal sera but most of the serum IgA had no secretory determinant. Secretory IgA, serum IgA and free secretory component were purified. Levels of the sheep and goat immunoglobulins were measured in various fluids.
Resumo:
The precise mechanisms underlying the interaction between intestinal bacteria and the host epithelium lead to multiple consequences that remain poorly understood at the molecular level. Deciphering such events can provide valuable information as to the mode of action of commensal and probiotic microorganisms in the gastrointestinal environment. Potential roles of such microorganisms along the privileged target represented by the mucosal immune system include maturation prior, during and after weaning, and the reduction of inflammatory reactions in pathogenic conditions. Using human intestinal epithelial Caco-2 cell grown as polarized monolayers, we found that association of a Lactobacillus or a Bifidobacterium with nonspecific secretory IgA (SIgA) enhanced probiotic adhesion by a factor of 3.4-fold or more. Bacteria alone or in complex with SIgA reinforced transepithelial electrical resistance, a phenomenon coupled with increased phosphorylation of tight junction proteins zonula occludens-1 and occludin. In contrast, association with SIgA resulted in both enhanced level of nuclear translocation of NF-κB and production of epithelial polymeric Ig receptor as compared with bacteria alone. Moreover, thymic stromal lymphopoietin production was increased upon exposure to bacteria and further enhanced with SIgA-based complexes, whereas the level of pro-inflammatory epithelial cell mediators remained unaffected. Interestingly, SIgA-mediated potentiation of the Caco-2 cell responsiveness to the two probiotics tested involved Fab-independent interaction with the bacteria. These findings add to the multiple functions of SIgA and underscore a novel role of the antibody in interaction with intestinal bacteria.
Resumo:
Linear IgA bullous dermatosis (LABD) is an autoimmune disease, characterized by linear deposition of IgA along the basement membrane zone. Drug-induced LABD is rare but increasing in frequency. A new case of drug-induced LABD associated with the administration of furosemide is described.
Resumo:
RESUME DESTINE A UN LARGE PUBLICL'intestin est le siège d'intenses agressions de la part de l'ensemble des aliments ingérés, de bactéries agressives dites pathogènes mais également de bactéries dites commensales peuplant naturellement les surfaces intestinales muqueuses. Pour faire face, notre organisme arbore de nombreux niveaux de protections tant physiques, chimiques, mécaniques mais aussi immunitaires. La présence d'un type particulier de cellules, les cellules épithéliales (IEC) assurant une protection physique, ainsi que la production d'anticorps spécialisés par le système immunitaire appelés immunoglobulines sécrétoires A (SlgA) servent conjointement de première ligne de défense contre ces agressions externes. Néanmoins, comment le dialogue s'articule entre ces deux partenaires reste incomplet.Nous avons donc décidé de mimer ces interactions en modélisant les surfaces muqueuses par une monocouche de cellules différenciées en laboratoire. Des souches bactériennes isolées de l'intestin humain seules ou associées à des SlgA non-spécifiques ont été mises au contact de ce modèle cellulaire nous permettant de conclure quant à la présence effective d'une modulation du dialogue bactérie/lEC impliquant une activation de la réponse cellulaire vers un état de tolérance mutuelle. De façon surprenante, nous avons par ailleurs mis en évidence un type d'interaction nouveau entre ces anticorps et ces bactéries. Une étude biochimique nous a permis de détailler un nouveau rôle des SlgA médié par les sucres présents à leur surface dans le maintien d'une relation pacifique avec les commensaux perpétuellement présents, relations qualifiées d'homésostase intestinale.Le rôle protecteur des SlgA a par ailleurs été abordé pour avoir une meilleure appréhension de leur impact au niveau cellulaire lors d'infection par Shigella flexneri, bactérie causant la Shigellose, diarrhée sanglante responsable de la mort de plus d'un million de personnes chaque année. Basée sur le même modèle cellulaire, cette étude nous a permis de démontrer une nouvelle entrée de ce pathogène directement via les IEC. La présence d'anticorps spécifiques à la surface des bactéries restreint leur champs d'action contre les cibles intracellulaires identifiées que sont les filaments soutenant le squelette de la cellule, les fibres d'actine ainsi que les jonctions serrées, réseaux de protéines clés des interactions entre cellules. Cette ouverture au niveau cellulaire apporte un nouvel élan quant à la compréhension du rôle protecteur des SlgA lors d'attaques de l'intestin, protection semblant dépendante d'une agrégation des bactéries.Pour finir, nous avons mis en évidence la détection directe par les cellules de la présence d'anticorps libres dans l'intestin ajoutant une nouvelle réplique dans le dialogue complexe entre ces deux piliers de l'équilibre intestinal que sont les SlgA et les cellules épithéliales.RESUMELa muqueuse intestinale est dotée d'un réseau complexe de protections physico-chimiques, mécaniques ou immunologiques. Associées à un système immunitaire omniprésent, les cellules épithéliales intestinales {IEC) bordant la lumière intestinale ont la double tâche de protéger l'intérieur de l'organisme stérile contre l'invasion et la dissémination d'agents pathogènes, et de maintenir une relation pacifique avec la flore intestinale, rôles également joués par les immunoglobulines sécrétoires A (SlgA), anticorps les plus abondamment présents à la surface des muqueuses. Tant les IEC que les SlgA sont ainsi décrites comme convergeant vers le même objectif ; néanmoins, les rouages de leurs interactions restent largement inconnus.Pour répondre à cette question, des monocouches épithéliales reconstituées in vitro ont été incubées avec des souches commensales telles que des Lactobacillus ou des Bifodobacteria, seules ou complexées avec des SlgA non-spécifiques, nous permettant de décrypter l'influence des SlgA sur la détection des bactéries par les IEC, favorisant l'adhésion bactérienne et la cohésion cellulaire, augmentant l'activation de la voie NF-κΒ ainsi que la sécrétion de la cytokine thymic stromal lymphopoietin contrairement à celle de médiateurs pro-inflammatoires qui reste inchangée. Par ailleurs, une interaction Fab-indépendante est suggérée dans l'interaction SlgA/bactéries. Comme une interaction de faible affinité a été décrite comme prenant naturellement place au niveau de l'intestin, nous avons donc disséqué les mécanismes sous- jacents en utilisant un large spectre de bactérie associés à des protéines soit recombinantes soit isolées à partir de colostrum, mettant en évidence un rôle crucial des N-glycanes présents sur la pièce sécrétoire et soulignant une nouvelle propriété des SlgA dans l'homéostase intestinale.Intrinsèquement liés aux caractéristiques des SlgA, nous nous sommes également focalisés sur leur rôle protecteur lors d'infection par l'enteropathogène Shigella flexneri reproduites in vitro sur des monocouches polarisées. Nous avons tout d'abord démontré une nouvelle porte d'entrée pour ce pathogène directement via les IEC. L'agrégation des bactéries par les SlgA confère aux cellules une meilleure résistance à l'infection, retardant croissance bactérienne et entrée cellulaire, affectant par ailleurs leur capacité à cibler le cytosquelette et les jonctions serrées. La formation de tels cargos détectés de façon biaisée par les IEC apparaît comme une explication plausible au maintien de la cohésion cellulaire médiée par les SlgA.Enfin, le retrotransport des SlgA à travers les IEC a été abordé soulignant une participation active de ces cellules dans la détection de l'environnement extérieur, les impliquant possiblement dans l'activation d'un état muqueux stable.Conjointement, ces résultats indiquent que les SlgA représentent l'un des éléments-clés à la surface de la muqueuse et soulignent la complexité du dialogue établi avec l'épithélium en vue du maintien d'un fragile équilibre intestinal.ABSTRACTThe intestinal mucosa is endowed with a complex protective network melting physiochemical, mechanical and immunological features. Beyond the ubiquitous intestinal immune system, intestinal epithelial cells (IEC) lying the mucosal surfaces have also the dual task to protect the sterile core against invasion and dissemination of pathogens, and maintain a peaceful relationship with commensal microorganisms, aims also achieved by the presence of high amounts of secretory immunoglobulins A (SlgA), the most abundant immunoglobulin present at mucosal surfaces. Both IEC and SlgA are thus described to converge toward the same goal but how their interplay is orchestrated is largely unknown.To address this question, in vitro reconstituted IEC monolayers were first apically incubated with commensal bacteria such as Lactobacillus or Bifodobacteria strains either alone or in complexes with non-specific SlgA. Favoring the bacterial adhesion and cellular cohesion, SlgA impacts on the cellular sensing of bacteria, increasing NF-κΒ activation, and leading to cytokine releases restricted to the thymic stromal lymphopoietin and unaffected expression of pro-inflammatory mediators. Of main interest, bacterial recognition by SlgA suggested a Fab-independent interaction. As this low affinity, called natural coating occurs in the intestine, we further dissected the underlying mechanisms using a larger spectrum of commensal strains associated with recombinant as well as colostrum-derived proteins and pinpointed a crucial role of N-glycans of the secretory component, emphasizing an underestimated role of carbohydrates and another properties of SlgA in mediating intestinal homeostasis.As mucosal protection is also anchored in SlgA and IEC features, we focused on the cellular role of SlgA. Using IEC apical infection by the enteropathogen Shigella flexneri, we have first demonstrated a new gate of entry for this pathogen directly via IEC. Specific SlgA bacterial aggregation conferred to the cells a better resistance to infection, delaying bacterial growth and cellular entry, affecting their ability to damage both the cytoskeleton and the tight junctions. Formation of such big cargos differentially detected by IEC appears as a plausible explanation sustaining at the cellular level the antibody-mediated mucosal protection.Finally, SlgA retrotransport across IEC has been tackled stressing an active IEC sensing of the external environment possibly involved in the steady-state mucosal activation.All together, these results indicate that SlgA represents one of the pivotal elements at mucosal surfaces highlighting the complexity of the dialogue established with the epithelium sustaining the fragile intestinal balance.The Intestinal mucosa is endowed with a complex protective network melting physiochemical, mechanical and immunological features. Beyond the ubiquitous intestinal immune system, intestinal epithelial cells (IEC) lying the mucosal surfaces have also the dual task to protect the sterile core against invasion and dissemination of pathogens, and maintain a peaceful relationship with commensal microorganisms, aims also achieved by the presence of high amounts of secretory immunoglobulins A (SlgA), the most abundant immunoglobulin present at mucosal surfaces. Both IEC and SlgA are thus described to converge toward the same goal but how their interplay is orchestrated is largely unknown.To address this question, in vitro reconstituted IEC monolayers were first apically incubated with commensal bacteria such as Lactobacillus or Bifodobacteria strains either alone or in complexes with non-specific SlgA. Favoring the bacterial adhesion and cellular cohesion, SlgA impacts on the cellular sensing of bacteria, increasing NF-κΒ activation, and leading to cytokine releases restricted to the thymic stromal lymphopoietin and unaffected expression of pro-inflammatory mediators. Of main interest, bacterial recognition by SlgA suggested a Fab-independent interaction. As this low affinity, called natural coating occurs in the intestine, we further dissected the underlying mechanisms using a larger spectrum of commensal strains associated with recombinant as well as colostrum-derived proteins and pinpointed a crucial role of N-glycans of the secretory component, emphasizing an underestimated role of carbohydrates and another properties of SlgA in mediating intestinal homeostasis.As mucosal protection is also anchored in SlgA and IEC features, we focused on the cellular role of SlgA. Using IEC apical infection by the enteropathogen Shigella flexneri, we have first demonstrated a new gate of entry for this pathogen directly via IEC. Specific SlgA bacterial aggregation conferred to the cells a better resistance to infection, delaying bacterial growth and cellular entry, affecting their ability to damage both the cytoskeleton and the tight junctions. Formation of such big cargos differentially detected by IEC appears as a plausible explanation sustaining at the cellular level the antibody-mediated mucosal protection.Finally, SlgA retrotransport across IEC has been tackled stressing an active IEC sensing of the external environment possibly involved in the steady-state mucosal activation.All together, these results indicate that SlgA represents one of the pivotal elements at mucosal surfaces highlighting the complexity of the dialogue established with the epithelium sustaining the fragile intestinal balance.
Resumo:
An improvement in the serological diagnostic toolbox of invasive aspergillosis (IA) is necessary. So far, most laboratories do not perform antibody detection assays at all to diagnose IA, as commercial test systems are based on crude and undefined antigen mixtures of A. fumigatus. Utilizing the A. fumigatus protein mitogillin, we could demonstrate that the use of selected characterized immunodominant antigens can improve the serodiagnosis of Aspergillus-related diseases. In an animal model we were able to identify additional 36 immunodominant antigens of a cDNA library of A. fumigatus germlings. Five selected antigens were expressed recombinantly in E. coli, purified and used for Westernblot und ELISA analyses to study the kinetics of the specific antibody response in rabbits that were infected systemically with A. fumigatus. Subsequently, the specific IgG- and IgA-antibody responses against these antigens were studied in patients suffering from proven IA and compared to healthy blood donors and patients with other forms of pneumonia. Furthermore, we examined how total IgG- and IgA-levels influence the diagnostic value of antibody detection in IA patients.
Resumo:
We have shown that in bovine colostrum and saliva there is a secretory IgA with a sedimentation, coefficient of 11S and a secretory piece, previously unknown and comparable with the 11S IgA described in human and rabbit external secretions. These secretory IgA contain molecules of 7S IgA with an additional protein segment called the transport or secretory piece1-5. Furthermore, the free form of the secretory piece is identified in bovine colostrum and also in mature milk which contains very little IgA.
Resumo:
Human beings live in symbiosis with billions of microorganisms colonizing mucosal surfaces. The understanding of the mechanisms underlying this fine-tuned intestinal balance has made significant processes during the last decades. We have recently demonstrated that the interaction of SIgA with Gram-positive bacteria is essentially based on Fab-independent, glycan-mediated recognition. Results obtained using mouse hybridoma- and colostrum-derived secretory IgA (SIgA) consistently show that N-glycans present on secretory component (SC) play a crucial role in the process. Natural coating may involve specific Gram-positive cell wall components, which may explain selective recognition at the molecular level. More widely, the existence of these complexes is involved in the modulation of intestinal epithelial cell (IEC) responses in vitro and the formation of intestinal biofilms. Thus, SIgA may act as one of the pillars in homeostatic maintenance of the microbiota in the gut, adding yet another facet to its multiple roles in the mucosal environment.
Resumo:
The free form of the secretory component usually associated with secretory IgA can be isolated from human and bovine milk. These free secretory components of different origin combine in vitro with human polymeric myeloma IgA, with mouse myeloma IgA, and with the serum IgA of nine different mammalian species.
Resumo:
Bovine secretory IgA (SIgA), recently identified in colostrum, was shown to be homologous to human SIgA by immunologic cross-reaction. A quantitative study indicated that bovine SIgA, a minor component of colostrum, is a major immunoglobulin in most other external secretions including saliva, spermatic fluid, lacrimal, nasal and gastrointestinal secretions. SIgA was isolated from saliva. The free form of secretory component was found to be abundant in milk. A normal lactating cow produces about 1.2 g of this protein per day. Two forms of IgA were identified in serum: a normal serum IgA with no secretory antigenic determinant, and a small amount of SIgA. In vitro synthesis of SIgA by the salivary gland was studied by tissue cultures with incorporation of labeled amino acids.
Resumo:
O objetivo deste trabalho foi avaliar a composição tecidual dos cortes da carcaça de ovinos jovens e adultos. Utilizaram-se 36 animais ½ Ile de France ½ Ideal (12 cordeiros não castrados, 12 ovelhas e 12 capões). Os animais foram criados em pasto de Tifton-85 e suplementados com concentrado em 1% em relação ao peso corporal. Os cordeiros foram desmamados com aproximadamente 17±0,87 kg de peso corporal e abatidos aos 32 kg, com aproximadamente cinco meses de idade; as ovelhas e os capões foram abatidos com aproximadamente 55±1,26 kg e 60 meses de idade. O corte da carcaça com maior porcentual de músculos foi o da perna, seguido da paleta e do lombo, entre as categorias animais estudadas. Os cordeiros apresentaram o maior porcentual de ossos, nos cortes da carcaça estudados, do que os animais adultos. As gorduras subcutânea, intermuscular e total, dos cortes da carcaça, foram maiores nos animais adultos do que nos jovens, e o lombo teve maior porcentual de gordura total, seguido da paleta e da perna. Concluiu-se que as categorias animais influenciam a composição tecidual dos cortes da carcaça, e o tecido adiposo é um dos principais responsáveis por tais diferenças.
Resumo:
Mucosal immunity to the enteric pathogen Shigella flexneri is mediated by secretory IgA (S-IgA) antibodies directed against the O-antigen (O-Ag) side chain of lipopolysaccharide. While secretory antibodies against the O-Ag are known to prevent bacterial invasion of the intestinal epithelium, the mechanisms by which this occurs are not fully understood. In this study, we report that the binding of a murine monoclonal IgA (IgAC5) to the O-Ag of S. flexneri serotype 5a suppresses activity of the type 3 secretion (T3S) system, which is necessary for S. flexneri to gain entry into intestinal epithelial cells. IgAC5's effects on the T3S were rapid (5 to 15 min) and were coincident with a partial reduction in the bacterial membrane potential and a decrease in intracellular ATP levels. Activity of the T3S system returned to normal levels 45 to 90 min following antibody treatment, demonstrating that IgAC5's effects were transient. Nonetheless, these data suggest a model in which the association of IgA with the O-Ag of S. flexneri partially de-energizes the T3S system and temporarily renders the bacterium incapable of invading intestinal epithelial cells. IMPORTANCE: Secretory IgA (S-IgA) serves as the first line of defense against enteric infections. However, despite its well-recognized role in mucosal immunity, relatively little is known at the molecular level about how this class of antibody functions to prevent pathogenic bacteria from penetrating the epithelial barrier. It is generally assumed that S-IgA functions primarily by "immune exclusion," a phenomenon in which the antibody binds to microbial surface antigens and thereby promotes bacterial agglutination, entrapment in mucus, and physical clearance from the gastrointestinal tract via peristalsis. The results of the present study suggest that in addition to serving as a physical barrier, S-IgA may have a direct impact on the ability of microbial pathogens to secrete virulence factors required for invasion of intestinal epithelial cells.