943 resultados para Antennas (Electronics)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The THz optoelectronics field is now maturing and semiconductor-based THz antenna devices are becoming more widely implemented as analytical tools in spectroscopy and imaging. Photoconductive (PC) THz switches/antennas are driven optically typically using either an ultrashort-pulse laser or an optical signal composed of two simultaneous longitudinal wavelengths which are beat together in the PC material at a THz difference frequency. This allows the generation of (photo)carrier pairs which are then captured over ultrashort timescales usually by defects and trapping sites throughout the active material lattice. Defect-implanted PC materials with relatively high bandgap energy are typically used and many parameters such as carrier mobility and PC gain are greatly compromised. This paper demonstrates the implementation of low bandgap energy InAs quantum dots (QDs) embedded in standard crystalline GaAs as both the PC medium and the ultrafast capture mechanism in a PC THz antenna. This semiconductor structure is grown using standard MBE methods and allows the device to be optically driven efficiently at wavelengths up to ~1.3 µm, in this case by a single tunable dual-mode QD diode laser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is directed towards optimizing the radiation pattern of smart antennas using genetic algorithms. The structure of the smart antennas based on Space Division Multiple Access (SDMA) is proposed. It is composed of adaptive antennas, each of which has adjustable weight elements for amplitudes and phases of signals. The corresponding radiation pattern formula available for the utilization of numerical optimization techniques is deduced. Genetic algorithms are applied to search the best phase-amplitude weights or phase-only weights with which the optimal radiation pattern can be achieved. ^ One highlight of this work is the proposed optimal radiation pattern concept and its implementation by genetic algorithms. The results show that genetic algorithms are effective for the true Signal-Interference-Ratio (SIR) design of smart antennas. This means that not only nulls can be put in the directions of the interfering signals but also simultaneously main lobes can be formed in the directions of the desired signals. The optimal radiation pattern of a smart antenna possessing SDMA ability has been achieved. ^ The second highlight is on the weight search by genetic algorithms for the optimal radiation pattern design of antennas having more than one interfering signal. The regular criterion for determining which chromosome should be kept for the next step iteration is modified so as to improve the performance of the genetic algorithm iteration. The results show that the modified criterion can speed up and guarantee the iteration to be convergent. ^ In addition, the comparison between phase-amplitude perturbations and phase-only perturbations for the radiation pattern design of smart antennas are carried out. The effects of parameters used by the genetic algorithm on the optimal radiation pattern design are investigated. Valuable results are obtained. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current mobile networks don't offer sufficient data rates to support multimedia intensive applications in development for multifunctional mobile devices. Ultra wideband (UWB) wireless technology is being considered as the solution to overcome data rate bottlenecks in the current mobile networks. UWB is able to achieve such high data transmission rates because it transmits data over a very large chunk of the frequency spectrum. As currently approved by the U.S. Federal Communication Commission it utilizes 7.5 GHz of spectrum between 3.1 GHz and 10.6 GHz. ^ Successful transmission and reception of information data using UWB wireless technology in mobile devices, requires an antenna that has linear phase, low dispersion and a voltage standing wave ratio (VSWR) ≤ 2 throughout the entire frequency band. Compatibility with an integrated circuit requires an unobtrusive and electrically small design. The previous techniques that have been used to optimize the performance of UWB wireless systems, involve proper design of source pulses for optimal UWB performance. The goal of this work is directed towards the designing of antennas for personal communication devices, with optimal UWB bandwidth performance. Several techniques are proposed for optimal UWB bandwidth performance of the UWB antenna designs in this Ph.D. dissertation. ^ This Ph.D. dissertation presents novel UWB antenna designs for personal communication devices that have been characterized and optimized using the finite difference time domain (FDTD) technique. The antenna designs reported in this research are physically compact, planar for low profile use, with sufficient impedance bandwidth (>20%), antenna input impedance of 50-Ω, and an omni-directional (±1.5 dB) radiation pattern in the operating bandwidth. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, wireless communication infrastructures have been widely deployed for both personal and business applications. IEEE 802.11 series Wireless Local Area Network (WLAN) standards attract lots of attention due to their low cost and high data rate. Wireless ad hoc networks which use IEEE 802.11 standards are one of hot spots of recent network research. Designing appropriate Media Access Control (MAC) layer protocols is one of the key issues for wireless ad hoc networks. ^ Existing wireless applications typically use omni-directional antennas. When using an omni-directional antenna, the gain of the antenna in all directions is the same. Due to the nature of the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 standards, only one of the one-hop neighbors can send data at one time. Nodes other than the sender and the receiver must be either in idle or listening state, otherwise collisions could occur. The downside of the omni-directionality of antennas is that the spatial reuse ratio is low and the capacity of the network is considerably limited. ^ It is therefore obvious that the directional antenna has been introduced to improve spatial reutilization. As we know, a directional antenna has the following benefits. It can improve transport capacity by decreasing interference of a directional main lobe. It can increase coverage range due to a higher SINR (Signal Interference to Noise Ratio), i.e., with the same power consumption, better connectivity can be achieved. And the usage of power can be reduced, i.e., for the same coverage, a transmitter can reduce its power consumption. ^ To utilizing the advantages of directional antennas, we propose a relay-enabled MAC protocol. Two relay nodes are chosen to forward data when the channel condition of direct link from the sender to the receiver is poor. The two relay nodes can transfer data at the same time and a pipelined data transmission can be achieved by using directional antennas. The throughput can be improved significant when introducing the relay-enabled MAC protocol. ^ Besides the strong points, directional antennas also have some explicit drawbacks, such as the hidden terminal and deafness problems and the requirements of retaining location information for each node. Therefore, an omni-directional antenna should be used in some situations. The combination use of omni-directional and directional antennas leads to the problem of configuring heterogeneous antennas, i e., given a network topology and a traffic pattern, we need to find a tradeoff between using omni-directional and using directional antennas to obtain a better network performance over this configuration. ^ Directly and mathematically establishing the relationship between the network performance and the antenna configurations is extremely difficult, if not intractable. Therefore, in this research, we proposed several clustering-based methods to obtain approximate solutions for heterogeneous antennas configuration problem, which can improve network performance significantly. ^ Our proposed methods consist of two steps. The first step (i.e., clustering links) is to cluster the links into different groups based on the matrix-based system model. After being clustered, the links in the same group have similar neighborhood nodes and will use the same type of antenna. The second step (i.e., labeling links) is to decide the type of antenna for each group. For heterogeneous antennas, some groups of links will use directional antenna and others will adopt omni-directional antenna. Experiments are conducted to compare the proposed methods with existing methods. Experimental results demonstrate that our clustering-based methods can improve the network performance significantly. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this dissertation was to investigate flexible polymer-nanoparticle composites with unique magnetic and electrical properties. Toward this goal, two distinct projects were carried out. The first project explored the magneto-dielectric properties and morphology of flexible polymer-nanoparticle composites that possess high permeability (µ), high permittivity (ε) and minimal dielectric, and magnetic loss (tan δε, tan δµ). The main materials challenges were the synthesis of magnetic nanoparticle fillers displaying high saturation magnetization (Ms), limited coercivity, and their homogeneous dispersion in a polymeric matrix. Nanostructured magnetic fillers including polycrystalline iron core-shell nanoparticles, and constructively assembled superparamagnetic iron oxide nanoparticles were synthesized, and dispersed uniformly in an elastomer matrix to minimize conductive losses. The resulting composites have demonstrated promising permittivity (22.3), permeability (3), and sustained low dielectric (0.1), magnetic (0.4) loss for frequencies below 2 GHz. This study demonstrated nanocomposites with tunable magnetic resonance frequency, which can be used to develop compact and flexible radio frequency devices with high efficiency. The second project focused on fundamental research regarding methods for the design of highly conductive polymer-nanoparticle composites that can maintain high electrical conductivity under tensile strain exceeding 100%. We investigated a simple solution spraying method to fabricate stretchable conductors based on elastomeric block copolymer fibers and silver nanoparticles. Silver nanoparticles were assembled both in and around block copolymer fibers forming interconnected dual nanoparticle networks, resulting in both in-fiber conductive pathways and additional conductive pathways on the outer surface of the fibers. Stretchable composites with conductivity values reaching 9000 S/cm maintained 56% of their initial conductivity after 500 cycles at 100% strain. The developed manufacturing method in this research could pave the way towards direct deposition of flexible electronic devices on any shaped substrate. The electrical and electromechanical properties of these dual silver nanoparticle network composites make them promising materials for the future construction of stretchable circuitry for displays, solar cells, antennas, and strain and tactility sensors.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small element spacing in compact arrays results in strong mutual coupling between the array elements. A decoupling network consisting of reactive cross-coupling elements can alleviate problems associated with the coupling. Closed-form design equations for the decoupling networks of symmetrical arrays with two or three elements are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this website, you can virtually attend all lectures, tutorials, computer Labs and quizzes and also access to lecture notes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tunable decoupling and matching network (DMN) for a closely spaced two-element antenna array is presented. The DMN achieves perfect matching for the eigenmodes of the array and thus simultaneously isolates and matches the system ports while keeping the circuit small. Arrays of closely spaced wire and microstrip monopole pairs are used to demonstrate the proposed DMN. It is found that monopoles with different lengths can be used for the design frequency by using this DMN, which increases the design flexibility. This property also enables frequency tuning using the DMN only without having to change the length of the antennas. The proposed DMN uses only one varactor to achieve a tuning range of 18.8% with both return loss and isolation better than 10-dB when the spacing between the antenna is 0.05λ. When the spacing increases to 0.1λ, the simulated tuning range is more than 60%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under pressure from both the ever increasing level of market competition and the global financial crisis, clients in consumer electronics (CE) industry are keen to understand how to choose the most appropriate procurement method and hence to improve their competitiveness. Four rounds of Delphi questionnaire survey were conducted with 12 experts in order to identify the most appropriate procurement method in the Hong Kong CE industry. Five key selection criteria in the CE industry are highlighted, including product quality, capability, price competition, flexibility and speed. This study also revealed that product quality was found to be the most important criteria for the “First type used commercially” and “Major functional improvements” projects. As for “Minor functional improvements” projects, price competition was the most crucial factor to be considered during the PP selection. These research findings provide owners with useful insights to select the procurement strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoscale science is growing evermore important on a global scale and is widely seen as playing an integral part in the growth of future world economies. The daunting energy crisis we are facing could be solved not only by new and improved ways of getting energy directly from the sun, but also by saving power thanks to advancements in electronics and sensors. New, cheap dye-sensitized and polymer solar cells hold the promise of environmentally friendly and simple production methods, along with mechanical flexibility and low weight, matching the conditions for a widespread deployment of this technology. Cheap sensors based on nanomaterials can make a fundamental contribution to the reduction of greenhouse gas emissions, allowing the creation of large sensor networks to monitor countries and cities, improving our quality of life. Nanowires and nano-platelets of metal oxides are at the forefront of the research to improve sensitivity and reduce the power consumption in gas sensors. Nanoelectronics is the next step in the electronic roadmap, with many devices currently in production already containing components smaller than 100 nm. Molecules and conducting polymers are at the forefront of this research with the goal of reducing component size through the use of cheap and environmentally friendly production methods. This, and the coming steps that will eventually bring the individual circuit element close to the ultimate limit of the atomic level, are expected to deliver better devices with reduced power consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of degradations in adaptive digital beam-forming (DBF) systems caused by mutual coupling between array elements. The focus is on compact arrays with reduced element spacing and, hence, strongly coupled elements. Deviations in the radiation patterns of coupled and (theoretically) uncoupled elements can be compensated for by weight-adjustments in DBF, but SNR degradation due to impedance mismatches cannot be compensated for via signal processing techniques. It is shown that this problem can be overcome via the implementation of a RF-decoupling-network. SNR enhancement is achieved at the cost of a reduced frequency bandwidth and an increased sensitivity to dissipative losses in the antenna and matching network structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for high-speed data services for portable device has become a driving force for development of advanced broadband access technologies. Despite recent advances in broadband wireless technologies, there remain a number of critical issues to be resolved. One of the major concerns is the implementation of compact antennas that can operate in a wide frequency band. Spiral antenna has been used extensively for broadband applications due to its planar structure, wide bandwidth characteristics and circular polarisation. However, the practical implementation of spiral antennas is challenged by its high input characteristic impedance, relatively low gain and the need for balanced feeding structures. Further development of wideband balanced feeding structures for spiral antennas with matching impedance capabilities remain a need. This thesis proposes three wideband feeding systems for spiral antennas which are compatible with wideband array antenna geometries. First, a novel tapered geometry is proposed for a symmetric coplanar waveguide (CPW) to coplanar strip line (CPS) wideband balun. This balun can achieve the unbalanced to balanced transformation while matching the high input impedance of the antenna to a reference impedance of 50 . The discontinuity between CPW and CPS is accommodated by using a radial stub and bond wires. The bandwidth of the balun is improved by appropriately tapering the CPW line instead of using a stepped impedance transformer. Next, the tapered design is applied to an asymmetric CPW to propose a novel asymmetric CPW to CPS wideband balun. The use of asymmetric CPW does away with the discontinuities between CPW and CPS without having to use a radial stub or bond wires. Finally, a tapered microstrip line to parallel striplines balun is proposed. The balun consists of two sections. One section is the parallel striplines which are connected to the antenna, with the impedance of balanced line equal to the antenna input impedance. The other section consists of a microstrip line where the width of the ground plane is gradually reduced to eventually resemble a parallel stripline. The taper accomplishes the mode and impedance transformation. This balun has significantly improved bandwidth characteristics. Characteristics of proposed feeding structures are measured in a back-to-back configuration and compared to simulated results. The simulated and measured results show the tapered microstrip to parallel striplines balun to have more than three octaves of bandwidth. The tapered microstrip line to parallel striplines balun is integrated with a single Archimedean spiral antenna and with an array of spiral antennas. The performance of the integrated structures is simulated with the aid of electromagnetic simulation software, and results are compared to measurements. The back-to-back microstrip to parallel strip balun has a return loss of better than 10 dB over a wide bandwidth from 1.75 to 15 GHz. The performance of the microstrip to parallel strip balun was validated with the spiral antennas. The results show the balun to be an effective mean of feeding network with a low profile and wide bandwidth (2.5 to 15 GHz) for balanced spiral antennas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A practical method for the design of dual-band decoupling and matching networks (DMN) for two closely spaced antennas using discrete components is presented. The DMN reduces the port-to-port coupling and enhances the diversity of the antennas. By applying the DMN, the radiation efficiency can also be improved when one port is fed and the other port is match terminated. The proposed DMN works at two frequencies simultaneously without the need for any switch. As a proof of concept, a dual-band DMN for a pair of monopoles spaced 0.05λ apart is designed. The measured return loss and port isolation exceed 10 dB from 1.71 GHz to 1.76 GHz and from 2.27 GHz to 2.32 GHz.