973 resultados para Antenna array feeds
Resumo:
Direction-of-arrival (DOA) estimation is susceptible to errors introduced by the presence of real-ground and resonant size scatterers in the vicinity of the antenna array. To compensate for these errors pre-calibration and auto-calibration techniques are presented. The effects of real-ground constituent parameters on the mutual coupling (MC) of wire type antenna arrays for DOA estimation are investigated. This is accomplished by pre-calibration of the antenna array over the real-ground using the finite element method (FEM). The mutual impedance matrix is pre-estimated and used to remove the perturbations in the received terminal voltage. The unperturbed terminal voltage is incorporated in MUSIC algorithm to estimate DOAs. First, MC of quarter wave monopole antenna arrays is investigated. This work augments an existing MC compensation technique for ground-based antennas and proposes reduction in MC for antennas over finite ground as compared to the perfect ground. A factor of 4 decrease in both the real and imaginary parts of the MC is observed when considering a poor ground versus a perfectly conducting one for quarter wave monopoles in the receiving mode. A simulated result to show the compensation of errors direction of arrival (DOA) estimation with actual realization of the environment is also presented. Secondly, investigations for the effects on received MC of λ/2 dipole arrays placed near real-earth are carried out. As a rule of thumb, estimation of mutual coupling can be divided in two regions of antenna height that is very near ground 0
Resumo:
This thesis develops high performance real-time signal processing modules for direction of arrival (DOA) estimation for localization systems. It proposes highly parallel algorithms for performing subspace decomposition and polynomial rooting, which are otherwise traditionally implemented using sequential algorithms. The proposed algorithms address the emerging need for real-time localization for a wide range of applications. As the antenna array size increases, the complexity of signal processing algorithms increases, making it increasingly difficult to satisfy the real-time constraints. This thesis addresses real-time implementation by proposing parallel algorithms, that maintain considerable improvement over traditional algorithms, especially for systems with larger number of antenna array elements. Singular value decomposition (SVD) and polynomial rooting are two computationally complex steps and act as the bottleneck to achieving real-time performance. The proposed algorithms are suitable for implementation on field programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware or application specific integrated chips (ASICs), which offer large number of processing elements that can be exploited for parallel processing. The designs proposed in this thesis are modular, easily expandable and easy to implement. Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method reduces the number of iterations it takes to converge to correct singular values, thus achieving closer to real-time performance. A general algorithm and a modular system design are provided making it easy for designers to replicate and extend the design to larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in various hardware platforms mentioned earlier. A fixed point implementation of proposed SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to increase the maximum achievable frequency of operation. The system was developed with the objective of achieving high throughput. Various modern cores available in FPGAs were used to maximize the performance and details of these modules are presented in detail. Finally, a parallel polynomial rooting technique based on Newton’s method applicable exclusively to root-MUSIC polynomials is proposed. Unique characteristics of root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial rooting method. The technique exhibits parallelism and converges to the desired root within fixed number of iterations, making this suitable for polynomial rooting of large degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC polynomial were analyzed to propose an algorithm. In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system, by providing simple, high throughput, parallel algorithms.
Resumo:
Im Rahmen des Forschungsprojektes TagDrive wird die Applikation von passiven Transpondern auf 13,56 MHz-Basis untersucht, die auf der Fahrbahn befestigt und zur Spurführung und Navigation von Fahrzeugen verwendet werden. Um den Einsatz von Folientranspondern (Smart Labels) bei hohen Fahrzeuggeschwindigkeiten in Zusammenhang mit Transponderlesegeräten am Fahrzeug zu testen, wurde ein Hochgeschwindigkeitsprüfstand für Relativgeschwindigkeiten zwischen Transponder und Lesegerät von bis zu 100 km/h entwickelt und Versuche bei variierenden Leseabständen durchgeführt. Für mechanische Prüfungen der applizierten Transponder inklusive Gehäuse wurden Druckprüfungen mit Hilfe einer servohydraulischen Prüfeinrichtung durchgeführt und ein neuer pneumatischer Prüfstand entwickelt, der den Überrollvorgang durch ein Rad nachbildet. Für klimatische Tests unter anderem nach DIN EN 60068-2-67 bzw. IEC 68-2-67 wurde ein Klimaschrank verwendet.
Resumo:
Abstract The proliferation of wireless sensor networks and the variety of envisioned applications associated with them has motivated the development of distributed algorithms for collaborative processing over networked systems. One of the applications that has attracted the attention of the researchers is that of target localization where the nodes of the network try to estimate the position of an unknown target that lies within its coverage area. Particularly challenging is the problem of estimating the target’s position when we use received signal strength indicator (RSSI) due to the nonlinear relationship between the measured signal and the true position of the target. Many of the existing approaches suffer either from high computational complexity (e.g., particle filters) or lack of accuracy. Further, many of the proposed solutions are centralized which make their application to a sensor network questionable. Depending on the application at hand and, from a practical perspective it could be convenient to find a balance between localization accuracy and complexity. Into this direction we approach the maximum likelihood location estimation problem by solving a suboptimal (and more tractable) problem. One of the main advantages of the proposed scheme is that it allows for a decentralized implementation using distributed processing tools (e.g., consensus and convex optimization) and therefore, it is very suitable to be implemented in real sensor networks. If further accuracy is needed an additional refinement step could be performed around the found solution. Under the assumption of independent noise among the nodes such local search can be done in a fully distributed way using a distributed version of the Gauss-Newton method based on consensus. Regardless of the underlying application or function of the sensor network it is al¬ways necessary to have a mechanism for data reporting. While some approaches use a special kind of nodes (called sink nodes) for data harvesting and forwarding to the outside world, there are however some scenarios where such an approach is impractical or even impossible to deploy. Further, such sink nodes become a bottleneck in terms of traffic flow and power consumption. To overcome these issues instead of using sink nodes for data reporting one could use collaborative beamforming techniques to forward directly the generated data to a base station or gateway to the outside world. In a dis-tributed environment like a sensor network nodes cooperate in order to form a virtual antenna array that can exploit the benefits of multi-antenna communications. In col-laborative beamforming nodes synchronize their phases in order to add constructively at the receiver. Some of the inconveniences associated with collaborative beamforming techniques is that there is no control over the radiation pattern since it is treated as a random quantity. This may cause interference to other coexisting systems and fast bat-tery depletion at the nodes. Since energy-efficiency is a major design issue we consider the development of a distributed collaborative beamforming scheme that maximizes the network lifetime while meeting some quality of service (QoS) requirement at the re¬ceiver side. Using local information about battery status and channel conditions we find distributed algorithms that converge to the optimal centralized beamformer. While in the first part we consider only battery depletion due to communications beamforming, we extend the model to account for more realistic scenarios by the introduction of an additional random energy consumption. It is shown how the new problem generalizes the original one and under which conditions it is easily solvable. By formulating the problem under the energy-efficiency perspective the network’s lifetime is significantly improved. Resumen La proliferación de las redes inalámbricas de sensores junto con la gran variedad de posi¬bles aplicaciones relacionadas, han motivado el desarrollo de herramientas y algoritmos necesarios para el procesado cooperativo en sistemas distribuidos. Una de las aplicaciones que suscitado mayor interés entre la comunidad científica es la de localization, donde el conjunto de nodos de la red intenta estimar la posición de un blanco localizado dentro de su área de cobertura. El problema de la localization es especialmente desafiante cuando se usan niveles de energía de la seal recibida (RSSI por sus siglas en inglés) como medida para la localization. El principal inconveniente reside en el hecho que el nivel de señal recibida no sigue una relación lineal con la posición del blanco. Muchas de las soluciones actuales al problema de localization usando RSSI se basan en complejos esquemas centralizados como filtros de partículas, mientas que en otras se basan en esquemas mucho más simples pero con menor precisión. Además, en muchos casos las estrategias son centralizadas lo que resulta poco prácticos para su implementación en redes de sensores. Desde un punto de vista práctico y de implementation, es conveniente, para ciertos escenarios y aplicaciones, el desarrollo de alternativas que ofrezcan un compromiso entre complejidad y precisión. En esta línea, en lugar de abordar directamente el problema de la estimación de la posición del blanco bajo el criterio de máxima verosimilitud, proponemos usar una formulación subóptima del problema más manejable analíticamente y que ofrece la ventaja de permitir en¬contrar la solución al problema de localization de una forma totalmente distribuida, convirtiéndola así en una solución atractiva dentro del contexto de redes inalámbricas de sensores. Para ello, se usan herramientas de procesado distribuido como los algorit¬mos de consenso y de optimización convexa en sistemas distribuidos. Para aplicaciones donde se requiera de un mayor grado de precisión se propone una estrategia que con¬siste en la optimización local de la función de verosimilitud entorno a la estimación inicialmente obtenida. Esta optimización se puede realizar de forma descentralizada usando una versión basada en consenso del método de Gauss-Newton siempre y cuando asumamos independencia de los ruidos de medida en los diferentes nodos. Independientemente de la aplicación subyacente de la red de sensores, es necesario tener un mecanismo que permita recopilar los datos provenientes de la red de sensores. Una forma de hacerlo es mediante el uso de uno o varios nodos especiales, llamados nodos “sumidero”, (sink en inglés) que actúen como centros recolectores de información y que estarán equipados con hardware adicional que les permita la interacción con el exterior de la red. La principal desventaja de esta estrategia es que dichos nodos se convierten en cuellos de botella en cuanto a tráfico y capacidad de cálculo. Como alter¬nativa se pueden usar técnicas cooperativas de conformación de haz (beamforming en inglés) de manera que el conjunto de la red puede verse como un único sistema virtual de múltiples antenas y, por tanto, que exploten los beneficios que ofrecen las comu¬nicaciones con múltiples antenas. Para ello, los distintos nodos de la red sincronizan sus transmisiones de manera que se produce una interferencia constructiva en el recep¬tor. No obstante, las actuales técnicas se basan en resultados promedios y asintóticos, cuando el número de nodos es muy grande. Para una configuración específica se pierde el control sobre el diagrama de radiación causando posibles interferencias sobre sis¬temas coexistentes o gastando más potencia de la requerida. La eficiencia energética es una cuestión capital en las redes inalámbricas de sensores ya que los nodos están equipados con baterías. Es por tanto muy importante preservar la batería evitando cambios innecesarios y el consecuente aumento de costes. Bajo estas consideraciones, se propone un esquema de conformación de haz que maximice el tiempo de vida útil de la red, entendiendo como tal el máximo tiempo que la red puede estar operativa garantizando unos requisitos de calidad de servicio (QoS por sus siglas en inglés) que permitan una decodificación fiable de la señal recibida en la estación base. Se proponen además algoritmos distribuidos que convergen a la solución centralizada. Inicialmente se considera que la única causa de consumo energético se debe a las comunicaciones con la estación base. Este modelo de consumo energético es modificado para tener en cuenta otras formas de consumo de energía derivadas de procesos inherentes al funcionamiento de la red como la adquisición y procesado de datos, las comunicaciones locales entre nodos, etc. Dicho consumo adicional de energía se modela como una variable aleatoria en cada nodo. Se cambia por tanto, a un escenario probabilístico que generaliza el caso determinista y se proporcionan condiciones bajo las cuales el problema se puede resolver de forma eficiente. Se demuestra que el tiempo de vida de la red mejora de forma significativa usando el criterio propuesto de eficiencia energética.
Resumo:
In this paper, a fully automatic goal-oriented hp-adaptive finite element strategy for open region electromagnetic problems (radiation and scattering) is presented. The methodology leads to exponential rates of convergence in terms of an upper bound of an user-prescribed quantity of interest. Thus, the adaptivity may be guided to provide an optimal error, not globally for the field in the whole finite element domain, but for specific parameters of engineering interest. For instance, the error on the numerical computation of the S-parameters of an antenna array, the field radiated by an antenna, or the Radar Cross Section on given directions, can be minimized. The efficiency of the approach is illustrated with several numerical simulations with two dimensional problem domains. Results include the comparison with the previously developed energy-norm based hp-adaptivity.
Contribución a la caracterización espacial de canales con sistemas MIMO-OFDM en la banda de 2,45 Ghz
Resumo:
La tecnología de múltiples antenas ha evolucionado para dar soporte a los actuales y futuros sistemas de comunicaciones inalámbricas en su afán por proporcionar la calidad de señal y las altas tasas de transmisión que demandan los nuevos servicios de voz, datos y multimedia. Sin embargo, es fundamental comprender las características espaciales del canal radio, ya que son las características del propio canal lo que limita en gran medida las prestaciones de los sistemas de comunicación actuales. Por ello surge la necesidad de estudiar la estructura espacial del canal de propagación para poder diseñar, evaluar e implementar de forma más eficiente tecnologías multiantena en los actuales y futuros sistemas de comunicación inalámbrica. Las tecnologías multiantena denominadas antenas inteligentes y MIMO han generado un gran interés en el área de comunicaciones inalámbricas, por ejemplo los sistemas de telefonía celular o más recientemente en las redes WLAN (Wireless Local Area Network), principalmente por la mejora que proporcionan en la calidad de las señales y en la tasa de transmisión de datos, respectivamente. Las ventajas de estas tecnologías se fundamentan en el uso de la dimensión espacial para obtener ganancia por diversidad espacial, como ya sucediera con las tecnologías FDMA (Frequency Division Multiplexing Access), TDMA (Time Division Multiplexing Access) y CDMA (Code Division Multiplexing Access) para obtener diversidad en las dimensiones de frecuencia, tiempo y código, respectivamente. Esta Tesis se centra en estudiar las características espaciales del canal con sistemas de múltiples antenas mediante la estimación de los perfiles de ángulos de llegada (DoA, Direction-of- Arrival) considerando esquemas de diversidad en espacio, polarización y frecuencia. Como primer paso se realiza una revisión de los sistemas con antenas inteligentes y los sistemas MIMO, describiendo con detalle la base matemática que sustenta las prestaciones ofrecidas por estos sistemas. Posteriormente se aportan distintos estudios sobre la estimación de los perfiles de DoA de canales radio con sistemas multiantena evaluando distintos aspectos de antenas, algoritmos de estimación, esquemas de polarización, campo lejano y campo cercano de las fuentes. Así mismo, se presenta un prototipo de medida MIMO-OFDM-SPAA3D en la banda ISM (Industrial, Scientific and Medical) de 2,45 Ghz, el cual está preparado para caracterizar experimentalmente el rendimiento de los sistemas MIMO, y para caracterizar espacialmente canales de propagación, considerando los esquemas de diversidad espacial, por polarización y frecuencia. Los estudios aportados se describen a continuación. Los sistemas de antenas inteligentes dependen en gran medida de la posición de los usuarios. Estos sistemas están equipados con arrays de antenas, los cuales aportan la diversidad espacial necesaria para obtener una representación espacial fidedigna del canal radio a través de los perfiles de DoA (DoA, Direction-of-Arrival) y por tanto, la posición de las fuentes de señal. Sin embargo, los errores de fabricación de arrays así como ciertos parámetros de señal conlleva un efecto negativo en las prestaciones de estos sistemas. Por ello se plantea un modelo de señal parametrizado que permite estudiar la influencia que tienen estos factores sobre los errores de estimación de DoA, tanto en acimut como en elevación, utilizando los algoritmos de estimación de DOA más conocidos en la literatura. A partir de las curvas de error, se pueden obtener parámetros de diseño para sistemas de localización basados en arrays. En un segundo estudio se evalúan esquemas de diversidad por polarización con los sistemas multiantena para mejorar la estimación de los perfiles de DoA en canales que presentan pérdidas por despolarización. Para ello se desarrolla un modelo de señal en array con sensibilidad de polarización que toma en cuenta el campo electromagnético de ondas planas. Se realizan simulaciones MC del modelo para estudiar el efecto de la orientación de la polarización como el número de polarizaciones usadas en el transmisor como en el receptor sobre la precisión en la estimación de los perfiles de DoA observados en el receptor. Además, se presentan los perfiles DoA obtenidos en escenarios quasiestáticos de interior con un prototipo de medida MIMO 4x4 de banda estrecha en la banda de 2,45 GHz, los cuales muestran gran fidelidad con el escenario real. Para la obtención de los perfiles DoA se propone un método basado en arrays virtuales, validado con los datos de simulación y los datos experimentales. Con relación a la localización 3D de fuentes en campo cercano (zona de Fresnel), se presenta un tercer estudio para obtener con gran exactitud la estructura espacial del canal de propagación en entornos de interior controlados (en cámara anecóica) utilizando arrays virtuales. El estudio analiza la influencia del tamaño del array y el diagrama de radiación en la estimación de los parámetros de localización proponiendo, para ello, un modelo de señal basado en un vector de enfoque de onda esférico (SWSV). Al aumentar el número de antenas del array se consigue reducir el error RMS de estimación y mejorar sustancialmente la representación espacial del canal. La estimación de los parámetros de localización se lleva a cabo con un nuevo método de búsqueda multinivel adaptativo, propuesto con el fin de reducir drásticamente el tiempo de procesado que demandan otros algoritmos multivariable basados en subespacios, como el MUSIC, a costa de incrementar los requisitos de memoria. Las simulaciones del modelo arrojan resultados que son validados con resultados experimentales y comparados con el límite de Cramer Rao en términos del error cuadrático medio. La compensación del diagrama de radiación acerca sustancialmente la exactitud de estimación de la distancia al límite de Cramer Rao. Finalmente, es igual de importante la evaluación teórica como experimental de las prestaciones de los sistemas MIMO-OFDM. Por ello, se presenta el diseño e implementación de un prototipo de medida MIMO-OFDM-SPAA3D autocalibrado con sistema de posicionamiento de antena automático en la banda de 2,45 Ghz con capacidad para evaluar la capacidad de los sistemas MIMO. Además, tiene la capacidad de caracterizar espacialmente canales MIMO, incorporando para ello una etapa de autocalibración para medir la respuesta en frecuencia de los transmisores y receptores de RF, y así poder caracterizar la respuesta de fase del canal con mayor precisión. Este sistema incorpora un posicionador de antena automático 3D (SPAA3D) basado en un scanner con 3 brazos mecánicos sobre los que se desplaza un posicionador de antena de forma independiente, controlado desde un PC. Este posicionador permite obtener una gran cantidad de mediciones del canal en regiones locales, lo cual favorece la caracterización estadística de los parámetros del sistema MIMO. Con este prototipo se realizan varias campañas de medida para evaluar el canal MIMO en términos de capacidad comparando 2 esquemas de polarización y tomando en cuenta la diversidad en frecuencia aportada por la modulación OFDM en distintos escenarios. ABSTRACT Multiple-antennas technologies have been evolved to be the support of the actual and future wireless communication systems in its way to provide the high quality and high data rates required by new data, voice and data services. However, it is important to understand the behavior of the spatial characteristics of the radio channel, since the channel by itself limits the performance of the actual wireless communications systems. This drawback raises the need to understand the spatial structure of the propagation channel in order to design, assess, and develop more efficient multiantenna technologies for the actual and future wireless communications systems. Multiantenna technologies such as ‘Smart Antennas’ and MIMO systems have generated great interest in the field of wireless communications, i.e. cellular communications systems and more recently WLAN (Wireless Local Area Networks), mainly because the higher quality and the high data rate they are able to provide. Their technological benefits are based on the exploitation of the spatial diversity provided by the use of multiple antennas as happened in the past with some multiaccess technologies such as FDMA (Frequency Division Multiplexing Access), TDMA (Time Division Multiplexing Access), and CDMA (Code Division Multiplexing Access), which give diversity in the domains of frequency, time and code, respectively. This Thesis is mainly focus to study the spatial channel characteristics using schemes of multiple antennas considering several diversity schemes such as space, polarization, and frequency. The spatial characteristics will be study in terms of the direction-of-arrival profiles viewed at the receiver side of the radio link. The first step is to do a review of the smart antennas and MIMO systems technologies highlighting their advantages and drawbacks from a mathematical point of view. In the second step, a set of studies concerning the spatial characterization of the radio channel through the DoA profiles are addressed. The performance of several DoA estimation methods is assessed considering several aspects regarding antenna array structure, polarization diversity, and far-field and near-field conditions. Most of the results of these studies come from simulations of data models and measurements with real multiantena prototypes. In the same way, having understand the importance of validate the theoretical data models with experimental results, a 2,4 GHz MIMO-OFDM-SPAA2D prototype is presented. This prototype is intended for evaluating MIMO-OFDM capacity in indoor and outdoor scenarios, characterize the spatial structure of radio channels, assess several diversity schemes such as polarization, space, and frequency diversity, among others aspects. The studies reported are briefly described below. As is stated in Chapter two, the determination of user position is a fundamental task to be resolved for the smart antenna systems. As these systems are equipped with antenna arrays, they can provide the enough spatial diversity to accurately draw the spatial characterization of the radio channel through the DoA profiles, and therefore the source location. However, certain real implementation factors related to antenna errors, signals, and receivers will certainly reduce the performance of such direction finding systems. In that sense, a parameterized narrowband signal model is proposed to evaluate the influence of these factors in the location parameter estimation through extensive MC simulations. The results obtained from several DoA algorithms may be useful to extract some parameter design for directing finding systems based on arrays. The second study goes through the importance that polarization schemes can have for estimating far-field DoA profiles in radio channels, particularly for scenarios that may introduce polarization losses. For this purpose, a narrowband signal model with polarization sensibility is developed to conduct an analysis of several polarization schemes at transmitter (TX) and receiver (RX) through extensive MC simulations. In addition, spatial characterization of quasistatic indoor scenarios is also carried out using a 2.45 GHz MIMO prototype equipped with single and dual-polarized antennas. A good agreement between the measured DoA profiles with the propagation scenario is achieved. The theoretical and experimental evaluation of polarization schemes is performed using virtual arrays. In that case, a DoA estimation method is proposed based on adding an phase reference to properly track the DoA, which shows good results. In the third study, the special case of near-field source localization with virtual arrays is addressed. Most of DoA estimation algorithms are focused in far-field source localization where the radiated wavefronts are assume to be planar waves at the receive array. However, when source are located close to the array, the assumption of plane waves is no longer valid as the wavefronts exhibit a spherical behavior along the array. Thus, a faster and effective method of azimuth, elevation angles-of-arrival, and range estimation for near-field sources is proposed. The efficacy of the proposed method is evaluated with simulation and validated with measurements collected from a measurement campaign carried out in a controlled propagation environment, i.e. anechoic chamber. Moreover, the performance of the method is assessed in terms of the RMSE for several array sizes, several source positions, and taking into account the effect of radiation pattern. In general, better results are obtained with larger array and larger source distances. The effect of the antennas is included in the data model leading to more accurate results, particularly for range rather than for angle estimation. Moreover, a new multivariable searching method based on the MUSIC algorithm, called MUSA (multilevel MUSIC-based algorithm), is presented. This method is proposed to estimate the 3D location parameters in a faster way than other multivariable algorithms, such as MUSIC algorithm, at the cost of increasing the memory size. Finally, in the last chapter, a MIMO-OFDM-SPAA3D prototype is presented to experimentally evaluate different MIMO schemes regarding antennas, polarization, and frequency in different indoor and outdoor scenarios. The prototype has been developed on a Software-Defined Radio (SDR) platform. It allows taking measurements where future wireless systems will be developed. The novelty of this prototype is concerning the following 2 subsystems. The first one is the tridimensional (3D) antenna positioning system (SPAA3D) based on three linear scanners which is developed for making automatic testing possible reducing errors of the antenna array positioning. A set of software has been developed for research works such as MIMO channel characterization, MIMO capacity, OFDM synchronization, and so on. The second subsystem is the RF autocalibration module at the TX and RX. This subsystem allows to properly tracking the spatial structure of indoor and outdoor channels in terms of DoA profiles. Some results are draw regarding performance of MIMO-OFDM systems with different polarization schemes and different propagation environments.
Resumo:
A new mutual impedance - the receiving mutual impedance - between two normal-mode helical antennas is defined, measured, and theoretically calculated. The variations of the receiving mutual impedance with antenna separation, with frequency, and with excitation source direction are critically investigated. An application of the receiving mutual impedance in direction finding demonstrates its more accurate description of the mutual coupling effect than that using the conventional mutual impedance.
Resumo:
Beamforming is a technique widely used in various fields. With the aid of an antenna array, the beamforming aims to minimize the contribution of unknown interferents directions, while capturing the desired signal in a given direction. In this thesis are proposed beamforming techniques using Reinforcement Learning (RL) through the Q-Learning algorithm in antennas array. One proposal is to use RL to find the optimal policy selection between the beamforming (BF) and power control (PC) in order to better leverage the individual characteristics of each of them for a certain amount of Signal to Interference plus noise Ration (SINR). Another proposal is to use RL to determine the optimal policy between blind beamforming algorithm of CMA (Constant Modulus Algorithm) and DD (Decision Direct) in multipath environments. Results from simulations showed that the RL technique could be effective in achieving na optimal of switching between different techniques.
Resumo:
This work aims to propose a new model of metasurface with simplified basic cell, able to convert linearly polarized signals generated by planar antenna array in circularly polarized signals, for the ISM frequency band (2.45 GHz), with good bandwidth of return loss and axial ratio. To study the behavior of the proposed structure, the metasurface is coupled to three different structures. First, initial tests are made with the metasurface coupled to a microstrip antenna in its simple configuration. Then the metasurface is coupled to an array with two elements of patch type. And later it is coupled to an optimized array, that uses a stub in its main feed, to get a better impedance matching. The structures are analyzed numerically through Ansoft HFSS™, and to validate these results, the structures are characterized experimentally. The characteristics of transmissions simulated and measures are presented. A good agreement between simulated and measured results was obtained. The structure proposed here has the advantage of meeting the desired characteristics, with a simple geometry to be built using a low-cost substrate (FR-4).
Resumo:
This work aims to propose a new model of metasurface with simplified basic cell, able to convert linearly polarized signals generated by planar antenna array in circularly polarized signals, for the ISM frequency band (2.45 GHz), with good bandwidth of return loss and axial ratio. To study the behavior of the proposed structure, the metasurface is coupled to three different structures. First, initial tests are made with the metasurface coupled to a microstrip antenna in its simple configuration. Then the metasurface is coupled to an array with two elements of patch type. And later it is coupled to an optimized array, that uses a stub in its main feed, to get a better impedance matching. The structures are analyzed numerically through Ansoft HFSS™, and to validate these results, the structures are characterized experimentally. The characteristics of transmissions simulated and measures are presented. A good agreement between simulated and measured results was obtained. The structure proposed here has the advantage of meeting the desired characteristics, with a simple geometry to be built using a low-cost substrate (FR-4).
Resumo:
Subspaces and manifolds are two powerful models for high dimensional signals. Subspaces model linear correlation and are a good fit to signals generated by physical systems, such as frontal images of human faces and multiple sources impinging at an antenna array. Manifolds model sources that are not linearly correlated, but where signals are determined by a small number of parameters. Examples are images of human faces under different poses or expressions, and handwritten digits with varying styles. However, there will always be some degree of model mismatch between the subspace or manifold model and the true statistics of the source. This dissertation exploits subspace and manifold models as prior information in various signal processing and machine learning tasks.
A near-low-rank Gaussian mixture model measures proximity to a union of linear or affine subspaces. This simple model can effectively capture the signal distribution when each class is near a subspace. This dissertation studies how the pairwise geometry between these subspaces affects classification performance. When model mismatch is vanishingly small, the probability of misclassification is determined by the product of the sines of the principal angles between subspaces. When the model mismatch is more significant, the probability of misclassification is determined by the sum of the squares of the sines of the principal angles. Reliability of classification is derived in terms of the distribution of signal energy across principal vectors. Larger principal angles lead to smaller classification error, motivating a linear transform that optimizes principal angles. This linear transformation, termed TRAIT, also preserves some specific features in each class, being complementary to a recently developed Low Rank Transform (LRT). Moreover, when the model mismatch is more significant, TRAIT shows superior performance compared to LRT.
The manifold model enforces a constraint on the freedom of data variation. Learning features that are robust to data variation is very important, especially when the size of the training set is small. A learning machine with large numbers of parameters, e.g., deep neural network, can well describe a very complicated data distribution. However, it is also more likely to be sensitive to small perturbations of the data, and to suffer from suffer from degraded performance when generalizing to unseen (test) data.
From the perspective of complexity of function classes, such a learning machine has a huge capacity (complexity), which tends to overfit. The manifold model provides us with a way of regularizing the learning machine, so as to reduce the generalization error, therefore mitigate overfiting. Two different overfiting-preventing approaches are proposed, one from the perspective of data variation, the other from capacity/complexity control. In the first approach, the learning machine is encouraged to make decisions that vary smoothly for data points in local neighborhoods on the manifold. In the second approach, a graph adjacency matrix is derived for the manifold, and the learned features are encouraged to be aligned with the principal components of this adjacency matrix. Experimental results on benchmark datasets are demonstrated, showing an obvious advantage of the proposed approaches when the training set is small.
Stochastic optimization makes it possible to track a slowly varying subspace underlying streaming data. By approximating local neighborhoods using affine subspaces, a slowly varying manifold can be efficiently tracked as well, even with corrupted and noisy data. The more the local neighborhoods, the better the approximation, but the higher the computational complexity. A multiscale approximation scheme is proposed, where the local approximating subspaces are organized in a tree structure. Splitting and merging of the tree nodes then allows efficient control of the number of neighbourhoods. Deviation (of each datum) from the learned model is estimated, yielding a series of statistics for anomaly detection. This framework extends the classical {\em changepoint detection} technique, which only works for one dimensional signals. Simulations and experiments highlight the robustness and efficacy of the proposed approach in detecting an abrupt change in an otherwise slowly varying low-dimensional manifold.
Resumo:
We consider a multipair relay channel, where multiple sources communicate with multiple destinations with the help of a full-duplex (FD) relay station (RS). All sources and destinations have a single antenna, while the RS is equipped with massive arrays. We assume that the RS estimates the channels by using training sequences transmitted from sources and destinations. Then, it uses maximum-ratio combining/maximum-ratio transmission (MRC/MRT) to process the signals. To significantly reduce the loop interference (LI) effect, we propose two massive MIMO processing techniques: i) using a massive receive antenna array; or ii) using a massive transmit antenna array together with very low transmit power at the RS. We derive an exact achievable rate in closed-form and evaluate the system spectral efficiency. We show that, by doubling the number of antennas at the RS, the transmit power of each source and of the RS can be reduced by 1.5 dB if the pilot power is equal to the signal power and by 3 dB if the pilot power is kept fixed, while maintaining a given quality-of-service. Furthermore, we compare FD and half-duplex (HD) modes and show that FD improves significantly the performance when the LI level is low.
Resumo:
Os veículos aéreos não tripulados, mais conhecidos por drones, têm tomado atualmente uma posição importante na sociedade. Para além da sua importância no meio militar, têm sido cada vez mais utilizados para meios comerciais uma vez que o seu custo é relativamente baixo e podem ser utilizados para inúmeras aplicações. Devido à sua importância em missões de salvamento, reconhecimento de terreno e até mesmo de ataque, é fundamental uma boa comunicação entre a aeronave e a estação terrestre. Sendo a antena um dos principais elementos do sistema de comunicação, esta dissertação centrou-se no desenvolvimento de uma agregado de antenas a operar à frequência de 2.45GHz. Pretende-se que este agregado apresente polarização circular direita bem como um ganho e largura de banda elevados. Com o objetivo de se obter uma comunicação mais eficiente entre a aeronave e a estação terrestre, o agregado permitirá o redirecionamento do feixe principal do diagrama de radiação. Para tal, serão analisadas três abordagens distintas recorrendo a linhas de atraso e switches, permitindo que seja efetuado beamforming.
Resumo:
Les techniques des directions d’arrivée (DOA) sont une voie prometteuse pour accroitre la capacité des systèmes et les services de télécommunications en permettant de mieux estimer le canal radio-mobile. Elles permettent aussi de suivre précisément des usagers cellulaires pour orienter les faisceaux d’antennes dans leur direction. S’inscrivant dans ce contexte, ce présent mémoire décrit étape par étape l’implémentation de l’algorithme de haut niveau MUSIC (MUltiple SIgnal Classification) sur une plateforme FPGA afin de déterminer en temps réel l’angle d’arrivée d’une ou des sources incidentes à un réseau d’antennes. Le concept du prototypage rapide des lois de commande (RCP) avec les outils de XilinxTM System generator (XSG) et du MBDK (Model Based Design Kit) de NutaqTM est le concept de développement utilisé. Ce concept se base sur une programmation de code haut niveau à travers des modèles, pour générer automatiquement un code de bas niveau. Une attention particulière est portée sur la méthode choisie pour résoudre le problème de la décomposition en valeurs et vecteurs propres de la matrice complexe de covariance par l’algorithme de Jacobi. L’architecture mise en place implémentant cette dernière dans le FPGA (Field Programmable Gate Array) est détaillée. Par ailleurs, il est prouvé que MUSIC ne peut effectuer une estimation intéressante de la position des sources sans une calibration préalable du réseau d’antennes. Ainsi, la technique de calibration par matrice G utilisée dans ce projet est présentée, en plus de son modèle d’implémentation. Enfin, les résultats expérimentaux du système mis à l’épreuve dans un environnement réel en présence d’une source puis de deux sources fortement corrélées sont illustrés et analysés.
Resumo:
The design and development of nonresonant edge slot antenna for phased array applications has been presented. The radiating element is a slot cut on the narrow wall of rectangular waveguide (edge slot). The admittance characteristics of the edge slot have been rigorously studied using a novel hybrid method. Nonresonant arrays have been fabricated using the present slot characterization data and the earlier published data. The experimentally measured electrical characteristics of the antenna are presented which clearly brings out the accuracy of the present method.