937 resultados para Anomalous diffusion
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.
Resumo:
A novel MRI method-diffusion tensor imaging-was used to compare the integrity of several white matter fibre tracts in patients with probable Alzheimer's disease. Relative to normal controls, patients with probable Alzheimer's disease showed a highly significant reduction in the integrity of the association white matter fibre tracts, such as the splenium of the corpus callosum, superior longitudinal fasciculus, and cingulum. By contrast, pyramidal tract integrity seemed unchanged. This novel finding is consistent with the clinical presentation of probable Alzheimer's disease, in which global cognitive decline is a more prominent feature than motor disturbance.
Resumo:
Diffusion- and perfusion-weighted magnetic resonance imaging provides important pathophysiological information in acute bra-in ischemia. We performed a prospective study in 19 sub-6-hour stroke patients using serial diffusion- and perfusion-weighted imaging before intravenous thrombolysis, with repeat studies, both subacutely and at outcome. For comparison of ischemic lesion evolution and clinical outcome, we used a historical control group of 21 sub-6-hour ischemic stroke patients studied serially with diffusion- and perfusion-weighted imaging. The two groups were well matched for the baseline National Institutes of Health Stroke Scale and magnetic resonance parameters. Perfusion-weighted imaging-diffusion-weighted imaging mismatch was present in 16 of 19 patients treated with tissue plasminogen activator, and 16 of 21 controls. Perfusion-weighted imaging-diffusion-weighted imaging mismatch patients treated with tissue plaminogen activator had higher recanalization rates and enhanced reperfusion at day 3 (81% vs 47% in controls), and a greater proportion of severely hypoperfused acute mismatch tissue not progressing to infarction (82% vs -25% in controls). Despite similar baseline diffusion-weighted imaging lesions, infarct expansion was less in the recombinant tissue plaminogen activator group (14cm(3) vs 56cm(3) in controls). The positive effect of thrombolysis on lesion growth in mismatch patients translated into a greater improvement in baseline to outcome National Institutes of Health Stroke Scale in the group treated with recombinant tissue plaminogen activator, and a significantly larger proportion of patients treated with recombinant tissue plaminogen activator having a clinically meaningful improvement in National Institutes of Health Stroke Scale of;2:7 points. The natural evolution of acute perfusion-weighted imaging-diffusion-weighted imaging mismatch tissue may be altered by thrombolysis, with improved stroke outcome. This has implications for the use of diffusion- and perfusion-weighted imaging in selecting and monitoring patients for thrombolytic therapy.
Resumo:
The phylogeny of the Australian legume genus Daviesia was estimated using sequences of the internal transcribed spacers of nuclear ribosomal DNA. Partial congruence was found with previous analyses using morphology, including strong support for monophyly of the genus and for a sister group relationship between the clade D. pachyloma and the rest of the genus. A previously unplaced bird-pollinated species, anceps + D. D. epiphyllum, was well supported as sister to the only other bird-pollinated species in the genus, D. speciosa, indicating a single origin of bird pollination in their common ancestor. Other morphological groups within Daviesia were not supported and require reassessment. A strong and previously unreported sister clade of Daviesia consists of the two monotypic genera Erichsenia and Viminaria. These share phyllode-like leaves and indehiscent fruits. The evolutionary history of cord roots, which have anomalous secondary thickening, was explored using parsimony. Cord roots are limited to three separate clades but have a complex history involving a small number of gains (most likely 0-3) and losses (0-5). The anomalous structure of cord roots ( adventitious vascular strands embedded in a parenchymatous matrix) may facilitate nutrient storage, and the roots may be contractile. Both functions may be related to a postfire resprouting adaptation. Alternatively, cord roots may be an adaptation to the low-nutrient lateritic soils of Western Australia. However, tests for association between root type, soil type, and growth habit were equivocal, depending on whether the variables were treated as phylogenetically dependent (insignificant) or independent ( significant).
Resumo:
WO(3)/chitosan and WO(3)/chitosan/poly(ethylene oxide) (PEO) films were prepared by the layer-by-layer method. The presence of chitosan enabled PEO to be carried into the self-assembled structure, contributing to an increase in the Li(+) diffusion rate. On the basis of the galvanostatic intermittent titration technique (GITT) and the quadratic logistic equation (QLE), a spectroelectrochemical method was used for determination of the ""optical"" diffusion coefficient (D(op)), enabling analysis of the Li(+) diffusion rate and, consequently, the coloration front rate in these host matrices. The D(op) values within the WO(3)/chitosan/PEO film were significantly higher than those within the WO(3)/chitosan film, mainly for higher values of injected charge. The presence of PEO also ensured larger accessibility to the electroactive sites, in accordance with the method employed here. Hence, this spectroelectrochemical method allowed us to separate the contribution of the diffusion process from the number of accessible electroactive sites in the materials, thereby aiding a better understanding of the useful electrochemical and electrochromic properties of these films for use in electrochromic devices. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background and Purpose-The Echoplanar Imaging Thrombolysis Evaluation Trial ( EPITHET) tests the hypothesis that perfusion-weighted imaging (PWI)-diffusion-weighted imaging (DWI) mismatch predicts the response to thrombolysis. There is no accepted standardized definition of PWI-DWI mismatch. We compared common mismatch definitions in the initial 40 EPITHET patients. Methods-Raw perfusion images were used to generate maps of time to peak (TTP), mean transit time (MTT), time to peak of the impulse response (Tmax) and first moment transit time (FMT). DWI, apparent diffusion coefficient ( ADC), and PWI volumes were measured with planimetric and thresholding techniques. Correlations between mismatch volume (PWIvol-DWIvol) and DWI expansion (T2(Day) (90-vol)-DWIAcute-vol) were also assessed. Results-Mean age was 68 +/- 11, time to MRI 4.5 +/- 0.7 hours, and median National Institutes of Health Stroke Scale (NIHSS) score 11 (range 4 to 23). Tmax and MTT hypoperfusion volumes were significantly lower than those calculated with TTP and FMT maps (P < 0.001). Mismatch >= 20% was observed in 89% (Tmax) to 92% (TTP/FMT/MTT) of patients. Application of a +4s ( relative to the contralateral hemisphere) PWI threshold reduced the frequency of positive mismatch volumes (TTP 73%/FMT 68%/Tmax 54%/MTT 43%). Mismatch was not significantly different when assessed with ADC maps. Mismatch volume, calculated with all parameters and thresholds, was not significantly correlated with DWI expansion. In contrast, reperfusion was correlated inversely with infarct growth (R= -0.51; P = 0.009). Conclusions-Deconvolution and application of PWI thresholds provide more conservative estimates of tissue at risk and decrease the frequency of mismatch accordingly. The precise definition may not be critical; however, because reperfusion alters tissue fate irrespective of mismatch.
The states, diffusion, and concentration distribution of water in radiation-formed PVA/PVP hydrogels
Resumo:
Hydrogels with various compositions of polyvinyl alcohol (PVA) and poly(1-vinyl-2-pyrrolidinone) (PVP) were prepared by irradiating mixtures of PVA and PVP in aqueous solutions with gamma-rays from Co-60 sources at room temperature. The states of water in the hydrogels were characterized using DSC and NMR T-2 relaxation measurements and the kinetics of water diffusion in the hydrogels were studied by sorption experiments and NMR imaging. The DSC endothermic peaks in the temperature range -10 to +10 degrees C implied that there are at least two kinds of freezable water present in the matrix. The difference between the total water content and the freezable water content was refer-red to as bound water, which is not freezable. The weight fraction of water at which only nonfreezable water is present in a hydrogel with F-VP = 0.19 has been estimated to be g(H2O)/g(Polymer) = 0.375. From water sorption experiments, it was demonstrated that the early stage of the diffusion of water into the hydrogels was Fickian. A curve-fit of the early-stage experimental data to the Fickian model allowed determination of the water diffusion coefficient, which was found to lie between 1.5 x 10(-11) m(2) s(-1) and 4.5 x 10(-11) m(2) s(-1), depending on the polymer composition, the cross-link density, and the temperature. It was also found that the energy barrier for diffusion of water molecules into PVA/PVP hydrogels was approximate to 24 kJ mol(-1). Additionally, the diffusion coefficients determined from NMR imaging of the volumetric swelling of the gels agreed well with the results obtained by the mass sorption method.
Resumo:
We conduct a theoretical analysis to investigate the double diffusion-driven convective instability of three-dimensional fluid-saturated geological fault zones when they are heated uniformly from below. The fault zone is assumed to be more permeable than its surrounding rocks. In particular, we have derived exact analytical solutions to the total critical Rayleigh numbers of the double diffusion-driven convective flow. Using the corresponding total critical Rayleigh numbers, the double diffusion-driven convective instability of a fluid-saturated three-dimensional geological fault zone system has been investigated. The related theoretical analysis demonstrates that: (1) The relative higher concentration of the chemical species at the top of the three-dimensional geological fault zone system can destabilize the convective flow of the system, while the relative lower concentration of the chemical species at the top of the three-dimensional geological fault zone system can stabilize the convective flow of the system. (2) The double diffusion-driven convective flow modes of the three-dimensional geological fault zone system are very close each other and therefore, the system may have the similar chance to pick up different double diffusion-driven convective flow modes, especially in the case of the fault thickness to height ratio approaching 0. (3) The significant influence of the chemical species diffusion on the convective instability of the three-dimensional geological fault zone system implies that the seawater intrusion into the surface of the Earth is a potential mechanism to trigger the convective flow in the shallow three-dimensional geological fault zone system.
Resumo:
OBJECTIVE. Toxic leukoencephalopathy may present acutely or subacutely with symmetrically reduced diffusion in the periventricular and supraventricular white matter, hereafter referred to as periventricular white matter. This entity may reverse both on imaging and clinically. However, a gathering together of the heterogeneous causes of this disorder as seen on MRI with diffusion-weighted imaging (DWI) and an analysis of their likelihood to reverse has not yet been performed. Our goals were to gather causes of acute or subacute toxic leukoencephalopathy that can present with reduced diffusion of periventricular white matter in order to promote recognition of this entity, to evaluate whether DWI with apparent diffusion coefficient (ADC) values can predict the extent of chronic FLAIR abnormality ( imaging reversibility), and to evaluate whether DWI can predict the clinical outcome ( clinical reversibility). MATERIALS AND METHODS. Two neuroradiologists retrospectively reviewed the MRI examinations of 39 patients with acute symptoms and reduced diffusion of periventricular white matter. The reviewers then scored the extent of abnormality on DWI and FLAIR. ADC ratios of affected white matter versus the unaffected periventricular white matter were obtained. Each patient`s clinical records were reviewed to determine the cause and clinical outcome. Histology findings were available in three patients. Correlations were calculated between the initial MRI markers and both the clinical course and the follow-up extent on FLAIR using Spearman`s correlation coefficient. RESULTS. Of the initial 39 patients, seven were excluded because of a nontoxic cause (hypoxic-ischemic encephalopathy [HIE] or congenital genetic disorders) or because of technical errors. In the remaining 32 patients, no correlation was noted between any of the initial MRI markers (percentage of ADC reduction, DWI extent, or FLAIR extent) with the clinical outcome. Three patients had histologic correlation. However, moderate correlation was seen between the extent of abnormality on initial FLAIR and the extent on follow-up FLAIR (r = 0.441, p = 0.047). Of the 13 patients who underwent repeat MRI at 21 days or longer, the reduced diffusion resolved in all but one. Significant differences were noted between ADC values in affected white matter versus unaffected periventricular white matter on initial (p < 0.0001) but not on follow-up MRI (p = 0.13), and in affected white matter on initial versus follow-up (p = 0.0014) in those individuals who underwent repeat imaging on the same magnet (n = 9), confirming resolution of the DWI abnormalities. CONCLUSION. Acute toxic leukoencephalopathy with reduced diffusion may be clinically reversible and radiologically reversible on DWI, and may also be reversible, but to a lesser degree, on FLAIR MRI. None of the imaging markers measured in this study appears to correlate with clinical outcome, which underscores the necessity for prompt recognition of this entity. Alerting the clinician to this potentially reversible syndrome can facilitate treatment and removal of the offending agent in the early stages.
Resumo:
Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Background Schizophrenia has been associated with semantic memory impairment and previous studies report a difficulty in accessing semantic category exemplars (Moelter et al. 2005 Schizophr Res 78:209–217). The anterior temporal cortex (ATC) has been implicated in the representation of semantic knowledge (Rogers et al. 2004 Psychol Rev 111(1):205–235). We conducted a high-field (4T) fMRI study with the Category Judgment and Substitution Task (CJAST), an analogue of the Hayling test. We hypothesised that differential activation of the temporal lobe would be observed in schizophrenia patients versus controls. Methods Eight schizophrenia patients (7M : 1F) and eight matched controls performed the CJAST, involving a randomised series of 55 common nouns (from five semantic categories) across three conditions: semantic categorisation, anomalous categorisation and word reading. High-resolution 3D T1-weighted images and GE EPI with BOLD contrast and sparse temporal sampling were acquired on a 4T Bruker MedSpec system. Image processing and analyses were performed with SPM2. Results Differential activation in the left ATC was found for anomalous categorisation relative to category judgment, in patients versus controls. Conclusions We examined semantic memory deficits in schizophrenia using a novel fMRI task. Since the ATC corresponds to an area involved in accessing abstract semantic representations (Moelter et al. 2005), these results suggest schizophrenia patients utilise the same neural network as healthy controls, however it is compromised in the patients and the different ATC activity might be attributable to weakening of category-to-category associations.