363 resultados para Angulogerina angulosa


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The presence of gas hydrates on the Blake Ridge diapir, northeastern Atlantic Ocean, offers an opportunity to study the impact of methane seepage on the ecology and geochemistry of benthic foraminifera in the late Holocene. Three push cores, covering a time span of ~ 1000 yrs, were retrieved from three distinct microhabitats at the top of the diapir at a water depth of ~ 2150 m: (i) sediments away from seepage (control core), (ii) sediments overlain by clusters of methanotrophic and thiotrophic bivalves, and (iii) chemoautotrophic microbial mats. The foraminiferal assemblages at the two seep sites are marked by a reduction in benthic foraminiferal species diversity, coupled with a near-absence of agglutinated species. However, an opportunistic population rise in CH4- or H2S-tolerant calcareous species (e.g., Globocassidulina subglobosa and Cassidulina laevigata) that utilize the abundant trophic resources at the seeps has led to an increase in the overall assemblage density there. The delta18O and delta13C values of three species of benthic foraminifera - Gyroidinoides laevigatus, Globocassidulina subglobosa, and Uvigerina peregrina - and the planktonic species Globorotalia menardii were acquired from all three cores. The benthic species from methane seeps yield delta13C values of 0.1 to - 4.2 (per mil VPDB), that are distinctly more 13C-depleted relative to the delta13C of 0.4 to - 1.0 (per mil VPDB) at the control (off seep) site. The species from a mussel-bed site exhibit more negative delta13C values than those from microbial mats, possibly reflecting different food sources and higher rate of anaerobic oxidation of methane. The positive delta13C values in the paired planktonic species suggest that authigenic carbonate precipitation did not overprint the observed 13C depletions. Hence the probable cause of negative delta13C of benthic foraminifera is primary calcification from Dissolved Inorganic Carbon (DIC) containing mixed carbon fractions from (a) highly 13C-depleted, microbially-oxidized methane and (b) a seawater source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reworked shallow-water larger and deep-water calcareous benthic foraminifers were recovered from foraminiferal packstones and nannofossil chalks in Hole 802A. The autochthonous zeolitic pelagic claystone is characterized by late Campanian abyssal agglutinated foraminifers that allow correlation with the North Atlantic and the adjacent Pigafetta Basin. Assemblages of DendrophryalRhizammina in graded beds within the zeolitic claystone indicate reworking through entrainment in the flocculent E layer of turbidites, rather than recolonization following a biosiliceous event. Background sedimentation of the claystone took place below the carbonate compensation depth. The nannofossil chalk contains reworked lower bathyal to abyssal calcareous foraminifers of late Paleocene to early Miocene age. The topmost bed of the nannofossil chalk unit commences with an algal foraminiferal packstone containing Lepidocyclina sumatrensis, Heterostegina borneensis, Amphistegina hauerina, Asterigerina marshallana, and A. tentoria, which indicate that the source area was a shallow-water reef and allow the bed to be dated as early Miocene. The absence of obviously younger planktonic microfossils in the graded bed indicates that the resedimentation event was generally contemporaneous with original deposition and took place during an early Miocene global sea-level highstand. An early Miocene shallow-water assemblage is also seen in the graded beds at the base of a volcaniclastic turbidite sequence overlying the nannofossil chalks. Resedimentation of this unit was associated with volcanic activity some distance away.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep-sea benthic foraminiferal faunas were studied from Sites 608 (depth 3534 m, 42°50'N, 23°05'W) and 610 (depth 2427 m, 53°13'N, 18°53'W). The sampling interval corresponded to 0.1 to 0.5 m.y. at Site 608 and in the sections of Site 610 from which core recovery was continuous. First and last appearances of benthic foraminiferal taxa are generally not coeval at the two sites, although the faunal patterns are similar and many species occur at both sites. Major periods of changes in the benthic faunas, as indicated by the numbers of first and last appearances and changes in relative abundances, occurred in the early Miocene (19.2-17 Ma), the middle Miocene (15.5-13.5 Ma), the late Miocene (7-5.5 Ma), and the Pliocene-Pleistocene (3.5-0.7 Ma). A period of minor changes in the middle to late Miocene (10-9 Ma) was recognized at Site 608 only. These periods of faunal changes can be correlated with periods of paleoceanographic changes: there was a period of sluggish circulation in the northeastern North Atlantic from 19.2 to 17 Ma, and the deep waters of the oceans probably cooled between 15.5 and 13.5 Ma, as indicated by an increase in delta18O values in benthic foraminiferal tests. The period between 10 and 9 Ma was probably characterized by relatively vigorous bottom-water circulation in the northeastern Atlantic, as indicated by the presence of a widespread reflector. The faunal change at 7 to 5.5 Ma corresponds in time with a worldwide change in delta13C values, and with the Messinian closing of the Mediterranean. The last and largest faunal changes correspond in time with the onset and intensification of Northern Hemisphere glaciation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent benthic foraminifera (> 125 µm) were investigated from multicorer samples on a latitudinal transect of 20 stations between 1°N and 32°S along the upper slope off West Africa. Samples were selected from a narrow water depth interval, between 1200 and 1500 m, so that changes in water masses are minimized, but changes in surface productivity are important and the only significant environmental variable. Live (Rose Bengal stained) benthic foraminifera were counted from the surface sediment down to a maximum of 12 cm. Dead foraminifera were investigated in the top 5 cm of the sediment only. Five live and five dead benthic foraminiferal assemblages were identified using Q-mode principal component analysis, matching distinct primary productivity provinces, characterized by different systems of seasonal and permanent upwelling. Differences in seasonality, quantity, and quality of food supply are the main controlling parameters on species composition and distribution of the benthic foraminiferal faunas. To test the sensitivity of foraminiferal studies based on the uppermost centimeter of sediment only, a comparative Q-mode principal component analysis was conducted on live and dead foraminiferal data from the top 1 cm of sediment. It has been demonstrated that, on the upper slope off West Africa, most of the environmental signals as recorded by species composition and distribution of the 'total' live and dead assemblages, i.e., including live and dead foraminifera from the surface sediment down to 12 cm and 5 cm, respectively, can be extracted from the assemblages in the top centimeter of sediment only. On the contrary, subsurface abundance maxima of live foraminifera and dissolution of empty tests strongly bias quantitative approaches based on the calculation of standing stocks and foraminiferal numbers in the topmost centimeter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

a) In der horizontalen Verbreitung sind die vorwiegend kalkschaligen Benthos-Foraminiferen im Untersuchungsgebiet auf zwei Faciesbereiche verteilt: 1. Eine sandige Facies mit stärkeren Temperatur- und Salzgehaltschwankungen; Wasseroberfläche t = 2O-17°C, Salzgehalt nie über 32 per mil, Meerestiefe 30 bis 92 m. 2. Schlick-Facies mit zum Teil feinsandigen Beimengungen. Temperatur- und Salzgehaltschwankungen sind geringer; Wasseroberfläche t = ca. 4O-15° C, Salzgehalt bis 34 per mil, Meerestiefe 135-548 m. b) Einige Stoßröhren-Proben (Station 18, 21, 27, 28) zeigen in ihrer vertikalen Verbreitung auffallende Faunenunterschiede. c) Im Profil des Lotkerns wechseln in der Foraminiferenfauna Bolivinen- und Cassidulinen-Nonioninen-Provinzen miteinander ab. Die Profile der beiden tiefsten Stoßröhren-Kerne (Station 23, 26; s. Tab. I) stimmen in ihrer Mikrofauna mit der des oberen Teils des Lotkerns (s. Tab. 4) überein. d) Die unter b und C angefuührten Faunenwechsel werden auf langperiodische Klimaerwärmungen im skandinavischen Raum und den damit verbundenen Anstieg des Meeresspiegels zurückgeführt. e) Der Lotkern kann mit Hilfe von Untersuchungsergebnissen aus seiner näheren Umgebung (Bohuslän, Oslofjord) nur bedingt in ein stratigraphisches, durch Megafossilien belegtes Schema eingefügt werden, da er nach unten durch die Mikrofauna keine echte Begrenzung aufweist. Durch die Einwanderung mehrerer Foraminiferenarten mit boreal-lusitanischer Verbreitung in die Untersuchungsgebiete wird der Lotkern in die Isocardia-Absätze (Atlanticum-oberes Subboreal) eingegliedert. f) Aus einer Tabelle von PRATJE(1940) kann entnommen werden, daß dieser Zeitabschnitt nach DE GEER etwa um 5000 v.Chr. beginnt. Danach beträgt die geringste Sedimentation, die in dem Kerngebiet nach dieser Zeitrechnung möglich ist, bei einer Eindringtiefe des Lots von 10 m ungefähr 1,40 m pro Jahrtausend. Wahrscheinlich wird dieses Maß etwas größer sein.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distribution of living (Rose Bengal-stained), dead and fossil benthic foraminifera was investigated in six short cores (multicores, 30-32 cm total length) recovered from the central Red Sea. The ecological preferences as well as the relationship between the live and dead/fossil assemblages (preserved down-core) were examined. The sites, located along a W-E profile and between the depth of 366 and 1782 m, extend from the center of the oxygen minimum zone (OMZ, ~200-650 m), through its margin at ~600 m, and down to the well-aerated deep-water environment. Live (Rose-Bengal stained) and coexisting dead foraminifera were studied in the upper 5 cm of each of the sites, and the fossil record was studied down to ~32 cm. Q-mode Principal Component Analysis was used and four distinct foraminiferal fossil assemblages were determined. These assemblages follow different water mass properties. In the center of the OMZ, where the organic carbon content is highest and the oxygen concentration is lowest (<=0.5 ml O2/l), the Bolivina persiensis-Bulimina marginata-Discorbinella rhodiensis assemblage dominates. The slightly more aerated and lower organic-carbon-content seafloor, at the margin of the OMZ, is characterized by the Neouvigerina porrecta-Gyroidinoides cf. G. soldanii assemblage. The transitional environment, between 900-1200 m, with its well-aerated and oligotrophic seafloor, is dominated by the Neouvigerina ampullacea-Cibicides mabahethi assemblage. The deeper water (>1500 m), characterized by the most oxygenated and oligotrophic seafloor conditions, is associated with the Astrononion sp. A-Hanzawaia sp. A assemblage. Throughout the Red Sea extremely high values of temperature and salinity are constant below ~200 m depth, but the flux of organic matter to the sea floor varies considerably with bathymetry and appears to be the main controlling factor governing the distribution pattern of the benthic foraminifera. Comparison between live and the dead/fossil assemblages reveals a large difference between the two. Processes that may control this difference include species-specific high turnover rates, and preferential predation and loss of fragile taxa (either by chemical or microbial processes). Significant variations in the degree of loss of the organic-cemented agglutinants were observed down core. This group is preserved down to 5-10 cm at the shallow OMZ sites and down to greater depths at well-aerated and oligotrophic sites. The lower rate of disintegration of these forms, in the deeper locations of the Red Sea, may be related to low microbial activity. This results in the preservation of increasing numbers of organic-cemented shells down-core.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent benthic foraminifera and their distribution in surface sediments were studied on a transect through the Peruvian oxygen minimum zone (OMZ) between 10 and 12°S. The OMZ with its steep gradients of oxygen concentrations allows to determine the oxygen-dependent changes of species compositions in a relatively small area. Our results from sediments of thirteen multicorer stations from 79 to 823 m water depth demonstrate that calcareous species, especially bolivinids dominate the assemblages throughout the OMZ. The depth distribution of several species matches distinct ranges of bottom water oxygen levels. The distribution pattern inferred a proxy which allows to estimate dissolved oxygen concentrations for reconstructing oxygen levels in the geological past.