941 resultados para Angrp-1 gene
Resumo:
Decreased nitric oxide (NO) activity, the formation of reactive oxygen species, and increased endothelial expression of the redox-sensitive vascular cell adhesion molecule 1 (VCAM-1) gene in the vessel wall are early and characteristic features of atherosclerosis. To explore whether these phenomena are functionally interrelated, we tested the hypothesis that redox-sensitive VCAM-1 gene expression is regulated by a NO-sensitive mechanism. In early passaged human umbilical vein endothelial cells and human dermal microvascular endothelial cells, the NO donor diethylamine-NO (DETA-NO, 100 microM) reduced VCAM-1 gene expression induced by the cytokine tumor necrosis factor alpha (TNF-alpha, 100 units/ml) at the cell surface level by 65% and intracellular adhesion molecule 1 (ICAM-1) gene expression by 35%. E-selectin gene expression was not affected. No effect on expression of cell adhesion molecules was observed with DETA alone. Moreover, DETA-NO suppressed TNF-alpha-induced mRNA accumulation of VCAM-1 and TNF-alpha-mediated transcriptional activation of the human VCAM-1 promoter. Conversely, treatment with NG-monomethyl-L-arginine (L-NMMA, 1 mM), an inhibitor of NO synthesis, augmented cytokine induction of VCAM-1 and ICAM-1 mRNA accumulation. By gel mobility shift analysis, DETA-NO inhibited TNF-alpha activation of DNA binding protein activity to the VCAM-1 NF-kappa B like binding sites. Peroxy-fatty acids such as 13-hydroperoxydodecanoeic acid (linoleyl hydroperoxide) may serve as an intracellular signal for NF-kappa B activation. Using thin layer chromatography, DETA-NO (100 microM) suppressed formation of this metabolite, suggesting that DETA-NO modifies the reactivity of oxygen intermediates in the vascular endothelium. Through this mechanism, NO may function as an immunomodulator of the vessel wall and thus mediate inflammatory events involved in the pathogenesis of atherosclerosis.
Resumo:
The high incidence of neurological disorders in patients afflicted with acquired immunodeficiency syndrome (AIDS) may result from human immunodeficiency virus type 1 (HIV-1) induction of chemotactic signals and cytokines within the brain by virus-encoded gene products. Transforming growth factor beta1 (TGF-beta1) is an immunomodulator and potent chemotactic molecule present at elevated levels in HIV-1-infected patients, and its expression may thus be induced by viral trans-activating proteins such as Tat. In this report, a replication-defective herpes simplex virus (HSV)-1 tat gene transfer vector, dSTat, was used to transiently express HIV-1 Tat in glial cells in culture and following intracerebral inoculation in mouse brain in order to directly determine whether Tat can increase TGF-beta1 mRNA expression. dSTat infection of Vero cells transiently transfected by a panel of HIV-1 long terminal repeat deletion mutants linked to the bacterial chloramphenicol acetyltransferase reporter gene demonstrated that vector-expressed Tat activated the long terminal repeat in a trans-activation response element-dependent fashion independent of the HSV-mediated induction of the HIV-1 enhancer, or NF-kappaB domain. Northern blot analysis of human astrocytic glial U87-MG cells transfected by dSTat vector DNA resulted in a substantial increase in steady-state levels of TGF-beta1 mRNA. Furthermore, intracerebral inoculation of dSTat followed by Northern blot analysis of whole mouse brain RNA revealed an increase in levels of TGF-beta1 mRNA similar to that observed in cultured glial cells transfected by dSTat DNA. These results provided direct in vivo evidence for the involvement of HIV-1 Tat in activation of TGF-beta1 gene expression in brain. Tat-mediated stimulation of TGF-beta1 expression suggests a novel pathway by which HIV-1 may alter the expression of cytokines in the central nervous system, potentially contributing to the development of AIDS-associated neurological disease.
Resumo:
The Epstein-Barr virus-encoded nuclear antigen EBNA-1 gene promoter for the restricted Epstein-Barr virus (EBV) latency program operating in group I Burkitt lymphoma (BL) cell lines was previously identified incorrectly. Here we present evidence from RACE (rapid amplification of cDNA ends) cloning, reverse transcription-PCR, and S1 nuclease analyses, which demonstrates that the EBNA-1 gene promoter in group I BL cell lines is located in the viral BamHI Q fragment, immediately upstream of two low-affinity EBNA-1 binding sites. Transcripts initiated from this promoter, referred to as Qp, have the previously reported Q/U/K exon splicing pattern. Qp is active in group I BL cell lines but not in group III BL cell lines or in EBV immortalized B-lymphoblastoid cell lines. In addition, transient transfection of Qp-driven reporter constructs into both an EBV-negative BL cell line and a group I BL cell line gave rise to correctly initiated transcripts. Inspection of Qp revealed that it is a TATA-less promoter whose architecture is similar to the promoters of housekeeping genes, suggesting that Qp may be a default promoter which ensures EBNA-1 expression in cells that cannot run the full viral latency program. Elucidation of the genetic mechanism responsible for the EBNA-1-restricted program of EBV latency is an essential step in understanding control of viral latency in EBV-associated tumors.
Resumo:
Vascular endothelial cells, serving as a barrier between vessel and blood, are exposed to shear stress in the body. Although endothelial responses to shear stress are important in physiological adaption to the hemodynamic environments, they can also contribute to pathological conditions--e.g., in atherosclerosis and reperfusion injury. We have previously shown that shear stress mediates a biphasic response of monocyte chemotactic protein 1 (MCP-1) gene expression in vascular endothelial cells and that the regulation is at the transcriptional level. These observations led us to functionally analyze the 550-bp promoter region of the MCP-1-encoding gene to define the cis element responding to shear stress. The shear stress/luciferase assay on the deletion constructs revealed that a 38-bp segment (-53 to -90 bp relative to the transcription initiation site) containing two divergent phorbol ester "12-O-tetradecanoylphorbol 13-acetate" (TPA)-responsive elements (TRE) is critical for shear inducibility. Site-specific mutations on these two sites further demonstrated that the proximal one (TGACTCC) but not the distal one (TCACTCA) was shear-responsive. Shear inducibility was lost after the mutation or deletion of the proximal site. This molecular mechanism of shear inducibility of the MCP-1 gene was functional in both the epithelial-like HeLa cells and bovine aortic endothelial cells (BAEC). In a construct with four copies of the TRE consensus sequences TGACTACA followed by the rat prolactin minimal promoter and luciferase gene, shear stress induced the reporter activities by 35-fold and 7-fold in HeLa cells and BAEC, respectively. The application of shear stress on BAEC also induced a rapid and transient phosphorylation of mitogen-activated protein kinases. Pretreatment of BAEC with TPA attenuated the shear-induced mitogen-activated protein kinase phosphorylation, suggesting that shear stress and TPA share a similar signal transduction pathway in activating cells. The present study provides a molecular basis for the transient induction of MCP-1 gene by shear stress.
Resumo:
Translocations involving chromosome band 11q23, found in 5-10% of human acute leukemias, disrupt the ALL-1 gene. This gene is fused by reciprocal translocation with a variety of other genes in acute lymphoblastic and myelogenous leukemias, and it undergoes self-fusion in acute myeloid leukemias with normal karyotype or trisomy 11. Here we report an alteration of the ALL-1 gene in a gastric carcinoma cell line (Mgc80-3). Characterization of this rearrangement revealed a three-way complex translocation, involving chromosomes 1 and 11, resulting in a partial duplication of the ALL-1 gene. Sequencing of reverse transcription-PCR products and Northern blot analysis showed that only the partially duplicated ALL-1 gene was transcribed, producing an mRNA with exon 8 fused to exon 2. This report of ALL-1 gene rearrangement in a solid tumor suggests that ALL-1 plays a role in the pathogenesis of some solid malignancies. The absence of the normal transcript in this cell line, in association with the loss-of-heterozygosity studies on chromosome 11q23 seen in solid tumors, suggests that ALL-1 is involved in tumorigenesis by a loss-of-function mechanism.
Resumo:
Antigenic variation of the intestinal protozoan parasite Giardia lamblia is caused by an exchange of the parasite's variant surface protein (VSP) coat. Many investigations on antigenic variation were performed with G. lamblia clone GS/M-83-H7 which produces surface antigen VSP H7. To generate novel information on giardial vsp gene transcription, vsp RNA levels were assessed by quantitative reverse transcription-(RT)-PCR in both axenic VSP H7-type trophozoites and subvariants obtained after negative selection of GS/M-83-H7 trophozoites by treatment with a cytotoxic, VSP H7-specific monoclonal antibody. Our investigation was not restricted to the assessment of the sense vsp transcript levels but also included an approach aimed at the detection of complementary antisense vsp transcripts within the two trophozoite populations. We found that sense vsp H7 RNA predominated in VSP H7-type trophozoites while sense RNA from only one (vsp IVg) of 8 subvariant vsp genes totally analysed predominated in subvariant-type trophozoites. Interestingly, the two trophozoite populations exhibited a similar relative distribution regarding the vsp H7 and vsp IVg antisense RNA molecules. An analogous sense versus antisense RNA pattern was also observed when the transcripts of gene cwp 1 (encoding cyst wall protein 1) were investigated. Here, both types of RNA molecules only appeared after cwp 1 had been induced through in vitro encystation of the parasite. These findings for the first time demonstrated that giardial antisense RNA production did not occur in a constitutive manner but was directly linked to complementary sense RNA production after activation of the respective gene systems.
Resumo:
inorganic sulfate is required for numerous functions in mammalian physiology, and its circulating levels are proposed to be maintained by the Na+-SO42- cotransporter, (NaSi-1). To determine the role of NaSi-1 in sulfate homeostasis and the physiological consequences in its absence, we have generated a mouse lacking a functional NaSi-1 gene, Nas1. Serum sulfate concentration was reduced by >75% in Nas1(-/-) mice when compared with Nas1(+/+) mice. Nas1(-/-) mice exhibit increased urinary sulfate excretion, reduced renal and intestinal Na+-SO42- cotransport, and a general growth retardation. Nas1(-/-) mouse body weight was reduced by >20% when compared with Nas1(+/+) and Nas1(+/-) littermates at 2 weeks of age and remained so throughout adulthood. Nas1(-/-) females had a lowered fertility, with a 60% reduction in litter size. Spontaneous clonic seizures were observed in Nas1(-/-) mice from 8 months of age. These data demonstrate NaSi-1 is essential for maintaining sulfate homeostasis, and its expression is necessary for a wide range of physiological functions.
Etr1-1 gene expression alters regeneration patterns in transgenic lettuce stimulating root formation
Resumo:
We have evaluated the transformation efficiency of two lettuce ( Lactuca sativa L.) cultivars, LE126 and Seagreen, using Agrobacterium tumefaciens- mediated gene transfer. Six- day- old cotyledons were co- cultivated with Agrobacterium cultures carrying binary vectors with two different genetic constructs. The first construct contained the beta- glucuronidase gene ( GUS) under the control of the cauliflower mosaic virus 35S promoter ( CaMV 35S), while the second construct contained the ethylene mutant receptor etr1- 1, which confers ethylene insensitivity, under the control of a leaf senescence- specific promoter ( sag12). Tissues co- cultivated with the GUS construct showed strong regeneration potential with over 90% of explants developing callus masses and 85% of the calli developing shoots. Histochemical GUS assays showed that 85.7% of the plants recovered were transgenic. Very different results were observed when cotyledon explants were co- cultivated with Agrobacteria carrying the etr1- 1 gene. There was a dramatic effect on the regeneration properties of the cultured explants with root formation taking place directly from the cotyledon tissue in 34% of the explants and no callus or shoots observed initially. Eventually callus formed in 10% of cotyledons and some organogenic shoots were obtained ( 2.86%). These results indicate that the ethylene insensitivity conferred by the etr1- 1 gene alters the normal pattern of regeneration in lettuce cotyledons, inhibiting the formation of shoots and stimulating root formation during regeneration.
Resumo:
Vascular endothelial growth factor (VEGF) is one of the major mediators of retinal ischemia-associated neovascularization. We have shown here that adeno-associated virus (AAV)-mediated expression of sFIt-1, a soluble form of the Flt-1 VEGF receptor, was maintained for up to 8 and 17 months postinjection in mice and in monkeys, respectively. The expression of sFIt-1 was associated with the long-term (8 months) regression of neovascular vessels in 85% of trVEGF029 eyes. In addition, it resulted in the maintenance of retinal morphology, as the majority of the treated trVEGF029 eyes (75%) retained high numbers of photoreceptors, and in retinal function as measured by electroretinography. AAV-mediated expression of sFIt-1 prevented the development of laser photocoagulation-incluced choroidal neovascularization in all treated monkey eyes. There were no clinically or histologically detectable signs of toxicity present in either animal model following AAV.sFlt injection. These results suggest that AAV-mediated secretion gene therapy could be considered for treatment of retinal and choroidal neovascularizations.
Resumo:
The orthologous proteins of the stress-activated protein kinase-interacting 1 (Sin1) family have been implicated in several different signal transduction pathways. In this study, we have investigated the function of the full-length human Sin1 protein and a C-terminally truncated isoform, Sin 1 alpha, which is produced by alternative splicing. Immunoblot analysis using an anti-Sin 1 polyclonal antibody showed that full-length Sin I and several smaller isoforms are widely expressed. Sin 1 was demonstrated to bind to c-Jun N-terminal kinase (JNK) in vitro and in vivo, while no interaction with p38- or ERK1/2-family MAPKs was observed. The Sin1 alpha isoform could also form a complex with JNK in vivo. Despite localizing in distinct compartments within the cell, both Sin1 and Sin1 alpha co-localized with JNK, suggesting that the Sin1 proteins could recruit JNK. Over-expression of full-length Sin1 inhibited the activation of JNK by UV-C in DG75 cells, as well as basal JNK-activity in HEK293 cells. These data suggest that the human Sin1 proteins may act as scaffold molecules in the regulation of signaling by JNK. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
We thank Sean Tracey and Jaime McAllister for supplying albacore and southern bluefin tuna samples, Eva Giacomello for collecting the skipjack tuna sample, Elena Sarropoulou for providing the Atlantic bonito assembly, Helen Hipperson for assistance in the lab, Barbara Block and Ziheng Yang for advice, the editors and reviewers for comments, and the Leverhulme Trust and BBSRC for funding