997 resultados para Anatomy, Regional
Resumo:
This paper investigates the Cooroy Mill community precinct (Sunshine Coast, Queensland), as a case study, seeking to understand the way local dynamics interplay and work with the community strengths to build a governance model of best fit. As we move to an age of ubiquitous computing and creative economies, the definition of public place and its governance take on new dimensions, which – while often utilizing models of the past – will need to acknowledge and change to the direction of the future. This paper considers a newly developed community precinct that has been built on three key principles: to foster creative expression with new media, to establish a knowledge economy in a regional area, and to subscribe to principles of community engagement. The study involved qualitative interviews with key stakeholders and a review of common practice models of governance along a spectrum from community control to state control. The paper concludes with a call for governance structures that are locally situated and tailored, inclusive, engaging, dynamic and flexible in order to build community capacity, encourage creativity, and build knowledge economies within emerging digital media cityscapes.
Resumo:
Tourism development is a priority for rural and regional areas of Australia. The challenge is how to develop the tourism industry in a sustainable manner. As part of a larger project investigating community perceptions of opportunities, strategies and challenges in regional sustainable development, this article explores participant's views and opinions of tourism development. Through purposive sampling, 28 local community leaders and residents in the Darling Downs region in Queensland, Australia, participated in four semi-structured focus groups. This paper focuses on two of these focus groups, where tourism was a critical issue. Participants were generally positive about the tourism industry and its impacts on their community, although they expressed several triple bottom line concerns about economic, environmental and scoial issues. Four key themes emerged: appropriate land use management, limited resources and ageing/insufficient infrastructure, preservaation of community heritage and lifestyle, and regional conflict. Residents supported sustainable tourism development and wanted to be more actively involved in decision-making, demanding greater transparency - and true engagement - from local government.
Resumo:
Purpose: To investigate the influence of soft contact lenses on regional variations in corneal thickness and shape while taking account of natural diurnal variations in these corneal parameters. Methods: Twelve young, healthy subjects wore 4 different types of soft contact lenses on 4 different days. The lenses were of two different materials (silicone hydrogel, hydrogel), designs (spherical, toric) and powers (–3.00, –7.00 D). Corneal thickness and topography measurements were taken before and after 8 hours of lens wear and on two days without lens wear, using the Pentacam HR system. Results: The hydrogel toric contact lens caused the greatest level of corneal thickening in the central (20.3 ± 10.0 microns) as well as peripheral cornea (24.1 ± 9.1 microns) (p < 0.001) with an obvious regional swelling of the cornea beneath the stabilizing zones. The anterior corneal surface generally showed slight flattening. All contact lenses resulted in central posterior corneal steepening and this was weakly correlated with central corneal swelling (p = 0.03) and peripheral corneal swelling (p = 0.01). Conclusions: There was an obvious regional corneal swelling apparent after wear of the hydrogel soft toric lenses, due to the location of the thicker stabilization zones of the toric lenses. However with the exception of the hydrogel toric lens, the magnitude of corneal swelling induced by the contact lenses over the 8 hours of wear was less than the natural diurnal thinning of the cornea over this same period.
Resumo:
The neutron logging method has been widely used for field measurement of soil moisture content. This non-destructive method permitted the measurement of in-situ soil moisture content at various depths without the need for burying any sensor. Twenty-three sites located around regional Melbourne have been selected for long term monitoring of soil moisture content using neutron probe. Soil samples collected during the installation are used for site characterisation and neutron probe calibration purposes. A linear relationship is obtained between the corrected neutron probe reading and moisture content for both the individual and combined data from seven sites. It is observed that the liner relationship, developed using combined data, can be used for all sites with an average accuracy of about 80%. Monitoring of the variation of soil moisture content with depth in six months for two sites is presented in this paper.
Resumo:
Expenditure on R&D in the China construction industry has been relatively low in comparison with many developed countries for a number of years – a situation considered to be a major barrier to the industry’s competitiveness in general and unsatisfactory industry development of the 31 regions involved. A major problem with this is the lack of a sufficiently sophisticated method of objectively evaluating R&D activity in what are quite complex circumstances considering the size and regional differences that exist in this part of the world. A regional construction R&D evaluation system (RCRES) is presented aimed at rectifying the situation. This is based on 12 indicators drawn from the Chinese Government’s R&D Inventory of Resources in consultation with a small group of experts in the field, and further factor analysed into three groups. From this, the required evaluation is obtained by a simple formula. Examination of the results provides a ranking list of the R&D performance of each of the 31 regions, indicating a general disproportion between coastal and inland regions and highlighting regions receiving special emphasis or currently lacking in development. The understanding on this is vital for the future of China’s construction industry.
Resumo:
Sustainable Urban and Regional Infrastructure Development: Technologies, Applications and Management, bridges the gap in the current literature by addressing the overall problems present in society's major infrastructures, and the technologies that may be applied to overcome these problems. It focuses on ways in which energy intensive but 'invisible' (to the general public) facilities can become green or greener. The studies presented re lessons to be learnt from our neighbors and from our own backyard, and provide an excellent general overview of the issues facing us all.
Resumo:
Purpose – The purpose of this paper is to introduce the JKM 2010 annual special issue on knowledge based development (KBD) with reference to the multi-level analysis characteristic of the field. ----- ----- Design/methodology/approach – A description of the knowledge management approach at ESOC (European Space Operations Centre of the European Space Agency) is provided first. At the core of this approach is the breakdown of knowledge in individual technical domains followed by coverage analysis and criticality assessment. Such a framework becomes the reference for best knowledge acquisition, transfer and storage locus identification and subsequent knowledge management practices and guidelines. ----- ----- Findings – KBD provides an integrated framework to account for multidisciplinary analyses and multilevel practices in knowledge capital generation, distribution and utilization. ----- ----- Originality/value – The collection of papers included in the annual special issue on KBD provides a representative, composite view of the research topics and applications concerns in the field. Involving a number of disciplines and levels of analysis, issues ranging from the technological gatekeeper to global knowledge flows show the interdependence of KBD concepts and tools.
Resumo:
Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim- inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.
Resumo:
Autonomous underwater gliders are robust and widely-used ocean sampling platforms that are characterized by their endurance, and are one of the best approaches to gather subsurface data at the appropriate spatial resolution to advance our knowledge of the ocean environment. Gliders generally do not employ sophisticated sensors for underwater localization, but instead dead-reckon between set waypoints. Thus, these vehicles are subject to large positional errors between prescribed and actual surfacing locations. Here, we investigate the implementation of a large-scale, regional ocean model into the trajectory design for autonomous gliders to improve their navigational accuracy. We compute the dead-reckoning error for our Slocum gliders, and compare this to the average positional error recorded from multiple deployments conducted over the past year. We then compare trajectory plans computed on-board the vehicle during recent deployments to our prediction-based trajectory plans for 140 surfacing occurrences.
Resumo:
The concept of ‘sustainability’ has been pushed to the forefront of policy-making and politics as the world wakes up to the impacts of climate change and the effects of the modern urban lifestyle. Climate change has emerged to be one of the biggest challenges faced by our planet today, threatening both built and natural systems with long term consequences which may be irreversible. While there is a vast literature in the market on sustainable cities and urban development, there is currently none that bring together the vital issues of urban and regional development, and the planning, management and implementation of sustainable infrastructure. Large scale infrastructure plays an important part in modern society by not only promoting economic growth, but also by acting as a key indicator for it. More importantly, it supplies municipal/local amenity and services: water, electricity, social and communication facilities, waste removal, transport of people and goods, as well as numerous other services. For the most part, infrastructure has been built by teams lead by engineers who are more concerned about functionality than the concept of sustainability. However, it has been widely stated that current practices and lifestyle cannot continue if we are to leave a healthy living planet to not only the next generation, but also to the generations beyond. Therefore, in order to be sustainable, there are drastic measures that need to be taken. Current single purpose and design infrastructures that are open looped are not sustainable; they are too resource intensive, consume too much energy and support the consumption of natural resources at a rate that will exhaust their supply. Because of this, it is vital that modern society, policy-makers, developers, engineers and planners become pioneers in introducing and incorporating sustainable features into urban and regional infrastructure.
Resumo:
In this paper a new approach is proposed for interpreting of regional frequencies in multi machine power systems. The method uses generator aggregation and system reduction based on coherent generators in each area. The reduced system structure is able to be identified and a kalman estimator is designed for the reduced system to estimate the inter-area modes using the synchronized phasor measurement data. The proposed method is tested on a six machine, three area test system and the obtained results show the estimation of inter-area oscillations in the system with a high accuracy.
Resumo:
This paper discusses major obstacles for the adoption of low cost level crossing warning devices (LCLCWDs) in Australia and reviews those trialed in Australia and internationally. The argument for the use of LCLCWDs is that for a given investment, more passive level crossings can be treated, therefore increasing safety benefits across the rail network. This approach, in theory, reduces risk across the network by utilizing a combination of low-cost and conventional level crossing interventions, similar to what is done in the road environment. This paper concludes that in order to determine if this approach can produce better safety outcomes than the current approach, involving the incremental upgrade of level crossings with conventional interventions, it is necessary to perform rigorous risk assessments and cost-benefit analyses of LCLCWDs. Further research is also needed to determine how best to differentiate less reliable LCCLWDs from conventional warning devices through the use of different warning signs and signals. This paper presents a strategy for progressing research and development of LCLCWDs and details how the Cooperative Research Centre (CRC) for Rail Innovation is fulfilling this strategy through the current and future affordable level crossing projects.
Resumo:
In an era of rapidly changing economic, social and environmental conditions, urban and regional planning education must be resilient, innovative and able to deal with the complex political and socio-economic fabric of post-modern cities. As a consequence, urban and regional planning education plays a fundamental role in educating and forming planning practitioners that will be able to tackle such complexity. However, not many tertiary education institutions provide a trans-cultural engagement opportunity for students, where the need to internationalise planning education has been widely recognised worldwide. The aim of this paper is to communicate the findings of three overseas study trips (Kuala Lumpur-Malaysia, Daejeon-Korea, Istanbul and Gallipoli-Turkey) that students of Queensland University of Technology are taken to where these study trips trailed the provision of an innovative tertiary education experience of teaching regional planning in an international context. The findings of the pedagogic analyses of the study reveal that the exposure of students to different planning processes and practices give them a new outlook on what they knew from their own country and provide them with useful insights on international planning issues and cultural differences and barriers.
Resumo:
Purpose: To examine the impact of different endotracheal tube (ETT) suction techniques on regional end-expiratory lung volume (EELV) and tidal volume (VT) in an animal model of surfactant-deficient lung injury. Methods: Six 2-week old piglets were intubated (4.0 mm ETT), muscle-relaxed and ventilated, and lung injury was induced with repeated saline lavage. In each animal, open suction (OS) and two methods of closed suction (CS) were performed in random order using both 5 and 8 French gauge (FG) catheters. The pre-suction volume state of the lung was standardised on the inflation limb of the pressure-volume relationship. Regional EELV and VT expressed as a proportion of the impedance change at vital capacity (%ZVCroi) within the anterior and posterior halves of the chest were measured during and for 60 s after suction using electrical impedance tomography. Results: During suction, 5 FG CS resulted in preservation of EELV in the anterior (nondependent) and posterior(dependent) lung compared to the other permutations, but these only reached significance in the anterior regions (p\0.001 repeated-measures ANOVA). VT within the anterior, but not posterior lung was significantly greater during 5FG CS compared to 8 FG CS; the mean difference was 15.1 [95% CI 5.1, 25.1]%ZVCroi. Neither catheter size nor suction technique influenced post-suction regional EELV or VT compared to pre-suction values (repeated-measures ANOVA). Conclusions: ETT suction causes transient loss of EELV and VT throughout the lung. Catheter size exerts a greater influence than suction method, with CS only protecting against derecruitment when a small catheter is used, especially in the non-dependent lung.