991 resultados para Analytic theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional wisdom suggests that group cohesion is strongly related to performance. This may be based on the notion that better cohesion leads to the sharing of group goals. However, empirical and meta-analytic studies have been unable to consistently demonstrate a relationship between cohesion and performance. Partially, this problem could be attributed to the disagreement on the precise definition of cohesion and its components. Further, when the cohesion construct is evaluated under Cohen’s Cumulative Research Program (CRP), it is surprisingly found to belong to the category of early-to-intermediate stage of theory development. Therefore, a thorough re-examination of the cohesion construct is essential to advance our understanding of the cohesion-productivity relationship. We propose a qualitative approach because it will help establish the definitions, enable us to better test our theories about cohesion and its moderators, and provide insights into how best to enlist cohesion to improve team performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive a closed-form analytic expression in momentum space for the asymptotic non-hydrogenic wavefunction of the quantum defect theory (QDT) due to Seaton and compare it with a widely used QDT-approximate wavefunction for the Rydberg states Li-3(2s), Mg-24(6s) and Rb-37(5s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that for the pion-nucleon theory the thermal bubble graph is analytic at the origin of the momentum-frequency space, although the internal propagators in the loop have the same mass. This means that, for this theory, the thermal effective potential is uniquely defined. We then examine how a slight modification of the interaction term results in a theory for which the thermal bubble graph displays the usual nonanalyticity at the origin and the thermal effective potential is not uniquely defined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the elements of the so-called KBc gamma subalgebra, we study a class of analytic solutions depending on a single function F(K) in the modified cubic superstring field theory. We compute the energy associated to these solutions and show that the result can be expressed in terms of a contour integral. For a particular choice of the function F(K), we show that the energy is given by integer multiples of a single D-brane tension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coupled-cluster theory in its single-reference formulation represents one of the most successful approaches in quantum chemistry for the description of atoms and molecules. To extend the applicability of single-reference coupled-cluster theory to systems with degenerate or near-degenerate electronic configurations, multireference coupled-cluster methods have been suggested. One of the most promising formulations of multireference coupled cluster theory is the state-specific variant suggested by Mukherjee and co-workers (Mk-MRCC). Unlike other multireference coupled-cluster approaches, Mk-MRCC is a size-extensive theory and results obtained so far indicate that it has the potential to develop to a standard tool for high-accuracy quantum-chemical treatments. This work deals with developments to overcome the limitations in the applicability of the Mk-MRCC method. Therefore, an efficient Mk-MRCC algorithm has been implemented in the CFOUR program package to perform energy calculations within the singles and doubles (Mk-MRCCSD) and singles, doubles, and triples (Mk-MRCCSDT) approximations. This implementation exploits the special structure of the Mk-MRCC working equations that allows to adapt existing efficient single-reference coupled-cluster codes. The algorithm has the correct computational scaling of d*N^6 for Mk-MRCCSD and d*N^8 for Mk-MRCCSDT, where N denotes the system size and d the number of reference determinants. For the determination of molecular properties as the equilibrium geometry, the theory of analytic first derivatives of the energy for the Mk-MRCC method has been developed using a Lagrange formalism. The Mk-MRCC gradients within the CCSD and CCSDT approximation have been implemented and their applicability has been demonstrated for various compounds such as 2,6-pyridyne, the 2,6-pyridyne cation, m-benzyne, ozone and cyclobutadiene. The development of analytic gradients for Mk-MRCC offers the possibility of routinely locating minima and transition states on the potential energy surface. It can be considered as a key step towards routine investigation of multireference systems and calculation of their properties. As the full inclusion of triple excitations in Mk-MRCC energy calculations is computational demanding, a parallel implementation is presented in order to circumvent limitations due to the required execution time. The proposed scheme is based on the adaption of a highly efficient serial Mk-MRCCSDT code by parallelizing the time-determining steps. A first application to 2,6-pyridyne is presented to demonstrate the efficiency of the current implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coupled-cluster (CC) theory is one of the most successful approaches in high-accuracy quantum chemistry. The present thesis makes a number of contributions to the determination of molecular properties and excitation energies within the CC framework. The multireference CC (MRCC) method proposed by Mukherjee and coworkers (Mk-MRCC) has been benchmarked within the singles and doubles approximation (Mk-MRCCSD) for molecular equilibrium structures. It is demonstrated that Mk-MRCCSD yields reliable results for multireference cases where single-reference CC methods fail. At the same time, the present work also illustrates that Mk-MRCC still suffers from a number of theoretical problems and sometimes gives rise to results of unsatisfactory accuracy. To determine polarizability tensors and excitation spectra in the MRCC framework, the Mk-MRCC linear-response function has been derived together with the corresponding linear-response equations. Pilot applications show that Mk-MRCC linear-response theory suffers from a severe problem when applied to the calculation of dynamic properties and excitation energies: The Mk-MRCC sufficiency conditions give rise to a redundancy in the Mk-MRCC Jacobian matrix, which entails an artificial splitting of certain excited states. This finding has established a new paradigm in MRCC theory, namely that a convincing method should not only yield accurate energies, but ought to allow for the reliable calculation of dynamic properties as well. In the context of single-reference CC theory, an analytic expression for the dipole Hessian matrix, a third-order quantity relevant to infrared spectroscopy, has been derived and implemented within the CC singles and doubles approximation. The advantages of analytic derivatives over numerical differentiation schemes are demonstrated in some pilot applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whilst estimation of the marginal (total) causal effect of a point exposure on an outcome is arguably the most common objective of experimental and observational studies in the health and social sciences, in recent years, investigators have also become increasingly interested in mediation analysis. Specifically, upon establishing a non-null total effect of the exposure, investigators routinely wish to make inferences about the direct (indirect) pathway of the effect of the exposure not through (through) a mediator variable that occurs subsequently to the exposure and prior to the outcome. Although powerful semiparametric methodologies have been developed to analyze observational studies, that produce double robust and highly efficient estimates of the marginal total causal effect, similar methods for mediation analysis are currently lacking. Thus, this paper develops a general semiparametric framework for obtaining inferences about so-called marginal natural direct and indirect causal effects, while appropriately accounting for a large number of pre-exposure confounding factors for the exposure and the mediator variables. Our analytic framework is particularly appealing, because it gives new insights on issues of efficiency and robustness in the context of mediation analysis. In particular, we propose new multiply robust locally efficient estimators of the marginal natural indirect and direct causal effects, and develop a novel double robust sensitivity analysis framework for the assumption of ignorability of the mediator variable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is important to check the fundamental assumption of most popular Item Response Theory models, unidimensionality. However, it is hard for educational and psychological tests to be strictly unidimensional. The tests studied in this paper are from a standardized high-stake testing program. They feature potential multidimensionality by presenting various item types and item sets. Confirmatory factor analyses with one-factor and bifactor models, and based on both linear structural equation modeling approach and nonlinear IRT approach were conducted. The competing models were compared and the implications of the bifactor model for checking essential unidimensionality were discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. In particular, when the involved kernel is analytic in the sampling parameter it can be stated in an abstract setting of reproducing kernel Hilbert spaces of entire functions which includes as a particular case the classical Shannon sampling theory. This abstract setting allows us to obtain a sort of converse result and to characterize when the sampling formula associated with an analytic Kramer kernel can be expressed as a Lagrange-type interpolation series. On the other hand, the de Branges spaces of entire functions satisfy orthogonal sampling formulas which can be written as Lagrange-type interpolation series. In this work some links between all these ideas are established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Though it works fine in some model systems, there exist a number of so-called pathological cases characterized by a significant deviation of main characteristics from the values predicted on the basis of the uniform distribution. Recently, we reported on how the reinjection probability density (RPD) can be generalized. Here, we extend this methodology and apply it to different dynamical systems exhibiting anomalous type-II and type-III intermittencies. Estimation of the universal RPD is based on fitting a linear function to experimental data and requires no a priori knowledge on the dynamical model behind. We provide special fitting procedure that enables robust estimation of the RPD from relatively short data sets (dozens of points). Thus, the method is applicable for a wide variety of data sets including numerical simulations and real-life experiments. Estimated RPD enables analytic evaluation of the length of the laminar phase of intermittent behaviors. We show that the method copes well with dynamical systems exhibiting significantly different statistics reported in the literature. We also derive and classify characteristic relations between the mean laminar length and main controlling parameter in perfect agreement with data provided by numerical simulations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proof-theoretic methods are developed and exploited to establish properties of the variety of lattice-ordered groups. In particular, a hypersequent calculus with a cut rule is used to provide an alternative syntactic proof of the generation of the variety by the lattice-ordered group of automorphisms of the real number chain. Completeness is also established for an analytic (cut-free) hypersequent calculus using cut elimination and it is proved that the equational theory of the variety is co-NP complete.