872 resultados para Anaerobic bacteria -- Industrial applications
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In recent years the need for the design of more sustainable processes and the development of alternative reaction routes to reduce the environmental impact of the chemical industry has gained vital importance. Main objectives especially regard the use of renewable raw materials, the exploitation of alternative energy sources, the design of inherently safe processes and of integrated reaction/separation technologies (e.g. microreactors and membranes), the process intensification, the reduction of waste and the development of new catalytic pathways. The present PhD thesis reports results derived during a three years research period at the School of Chemical Sciences of Alma Mater Studiorum-University of Bologna, Dept. of Industrial Chemistry and Materials (now Dept. of Industrial Chemistry “Toso Montanari”), under the supervision of Prof. Fabrizio Cavani (Catalytic Processes Development Group). Three research projects in the field of heterogeneous acid catalysis focused on potential industrial applications were carried out. The main project, regarding the conversion of lignocellulosic materials to produce monosaccharides (important intermediates for production of biofuels and bioplatform molecules) was financed and carried out in collaboration with the Italian oil company eni S.p.A. (Istituto eni Donegani-Research Center for non-Conventional Energies, Novara, Italy) The second and third academic projects dealt with the development of green chemical processes for fine chemicals manufacturing. In particular, (a) the condensation reaction between acetone and ammonia to give triacetoneamine (TAA), and (b) the Friedel-Crafts acylation of phenol with benzoic acid were investigated.
Resumo:
Dental caries is the most common chronic disease worldwide. It is characterized by the demineralization of tooth enamel caused by acid produced by cariogenic dental bacteria growing on tooth surfaces, termed bacterial biofilms. Cariogenesis is a complex biological process that is influence by multiple factors and is not attributed to a sole causative agent. Instead, caries is associated with multispecies microbial biofilm communities composed of some bacterial species that directly influence the development of a caries lesion and other species that are seemingly benign but must contribute to the community in an uncharacterized way. Clinical analysis of dental caries and its microbial populations is challenging due to many factors including low sensitivity of clinical measurement tools, variability in saliva chemistry, and variation in the microbiota. Our laboratory has developed an in vitro anaerobic biofilm model for dental carries to facilitate both clinical and basic research-based analyses of the multispecies dynamics and individual factors that contribute to cariogenicity. The rational for development of this system was to improve upon the current models that lack key elements. This model places an emphasis on physiological relevance and ease of maintenance and reproducibility. The uniqueness of the model is based on integrating four critical elements: 1) a biofilm community composed of four distinct and representative species typically associated with dental caries, 2) a semi-defined synthetic growth medium designed to mimic saliva, 3) physiologically relevant biofilm growth substrates, and 4) a novel biofilm reactor device designed to facilitate the maintenance and analysis. Specifically, human tooth sections or hydroxyapatite discs embedded into poly(methyl methacrylate) (PMMA) discs are incubated for an initial 24 hr in a static inverted removable substrate (SIRS) biofilm reactor at 37°C under anaerobic conditions in artificial saliva (CAMM) without sucrose in the presence of 1 X 106 cells/ml of each Actinomyces odontolyticus, Fusobacterium nucleatum, Streptococcus mutans, and Veillonella dispar. During days 2 and 3 the samples are maintained continually in CAMM with various exposures to 0.2% sucrose; all of the discs are transferred into fresh medium every 24 hr. To validate that this model is an appropriate in vitro representation of a caries-associated multispecies biofilm, research aims were designed to test the following overarching hypothesis: an in vitro anaerobic biofilm composed of four species (S. mutans, V. dispar, A. odontolyticus, and F. nucleatum) will form a stable biofilm with a community profile that changes in response to environmental conditions and exhibits a cariogenic potential. For these experiments the biofilms as described above were exposed on days 2 and 3 to either CAMM lacking sucrose (no sucrose), CAMM with 0.2% sucrose (constant sucrose), or were transferred twice a day for 1 hr each time into 0.2% sucrose (intermittent sucrose). Four types of analysis were performed: 1) fluorescence microscopy of biofilms stained with Syto 9 and hexidium idodine to determine the biofilm architecture, 2) quantitative PCR (qPCR) to determine the cell number of each species per cm2, 3) vertical scanning interferometry (VSI) to determine the cariogenic potential of the biofilms, and 4) tomographic pH imaging using radiometric fluorescence microscopy after exposure to pH sensitive nanoparticles to measure the micro-environmental pH. The qualitative and quantitative results reveal the expected dynamics of the community profile when exposed to different sucrose conditions and the cariogenic potential of this in vitro four-species anaerobic biofilm model, thus confirming its usefulness for future analysis of primary and secondary dental caries.
Resumo:
An EMI filter for a three-phase buck-type medium power pulse-width modulation rectifier is designed. This filter considers differential mode noise and complies with MIL-STD- 461E for the frequency range of 10kHz to 10MHz. In industrial applications, the frequency range of the standard starts at 150kHz and the designer typically uses a switching frequency of 28kHz because the fifth harmonic is out of the range. This approach is not valid for aircraft applications. In order to design the switching frequency in aircraft applications, the power losses in the semiconductors and the weight of the reactive components should be considered. The proposed design is based on a harmonic analysis of the rectifier input current and an analytical study of the input filter. The classical industrial design does not consider the inductive effect in the filter design because the grid frequency is 50/60Hz. However, in the aircraft applications, the grid frequency is 400Hz and the inductance cannot be neglected. The proposed design considers the inductance and the capacitance effect of the filter in order to obtain unitary power factor at full power. In the optimization process, several filters are designed for different switching frequencies of the converter. In addition, designs from single to five stages are considered. The power losses of the converter plus the EMI filter are estimated at these switching frequencies. Considering overall losses and minimal filter volume, the optimal switching frequency is selected
Resumo:
An EMI filter for a three-phase buck-type medium power pulse-width modulation rectifier is designed. This filter considers differential mode noise and complies with MIL-STD-461E for the frequency range of 10kHz to 10MHz. In industrial applications, the frequency range of the standard starts at 150kHz and the designer typically uses a switching frequency of 28kHz because the fifth harmonic is out of the range. This approach is not valid for aircraft applications. In order to design the switching frequency in aircraft applications, the power losses in the semiconductors and the weight of the reactive components should be considered. The proposed design is based on a harmonic analysis of the rectifier input current and an analytical study of the input filter. The classical industrial design does not consider the inductive effect in the filter design because the grid frequency is 50/60Hz. However, in the aircraft applications, the grid frequency is 400Hz and the inductance cannot be neglected. The proposed design considers the inductance and the capacitance effect of the filter in order to obtain unitary power factor at full power. In the optimization process, several filters are designed for different switching frequencies of the converter. In addition, designs from single to five stages are considered. The power losses of the converter plus the EMI filter are estimated at these switching frequencies. Considering overall losses and minimal filter volume, the optimal switching frequency is selected.
Resumo:
Cadmium has been widely used as a coating to provide protection against galvanic corrosion for steels and for its natural lubricity on threaded applications. However, it is a toxic metal and a known carcinogenic agent, which is plated from an aqueous bath containing cyanide salts. For these reasons, the use of cadmium has been banned in Europe for most industrial applications. However, the aerospace industry is still exempt due to the stringent technical and safety requirements associated with aeronautical applications, as an acceptable replacement is yet to be found. Al slurry coatings have been developed as an alternative to replace cadmium coatings. The coatings were deposited on AISI 4340 steel and have been characterized by optical and electron microscopy. Testing included salt fog corrosion exposure, fluid corrosion exposure (immersion), humidity resistance, coating-substrate and paint-coating adhesion, electric conductivity, galvanic corrosion, embrittlement and fatigue. The results indicated that Al slurry coatings are an excellent alternative for Cd replacement.
Resumo:
"A NASA industrial applications center"--P. [4] of cover.
Resumo:
"ILENR/AE-92/02."
Resumo:
Purpose To investigate the prevalence of infected herniated nucleus material in lumbar disc herniations and to determine if patients with an anaerobic infected disc are more likely to develop Modic change (MC) (bone oedema) in the adjacent vertebrae after the disc herniation. MCs (bone oedema) in vertebrae are observed in 6 % of the general population and in 35-40 % of people with low back pain. These changes are strongly associated with low back pain. There are probably a mechanical cause and an infective cause that causes MC. Several studies on nuclear tissue from herniated discs have demonstrated the presence of low virulent anaerobic microorganisms, predominantly Propionibacterium acnes, in 7-53 % of patients. At the time of a herniation these low virulent anaerobic bacteria may enter the disc and give rise to an insidious infection. Local inflammation in the adjacent bone may be a secondary effect due to cytokine and propionic acid production. Methods Patients undergoing primary surgery at a single spinal level for lumbar disc herniation with an MRI-confirmed lumbar disc herniation, where the annular fibres were penetrated by visible nuclear tissue, had the nucleus material removed. Stringent antiseptic sterile protocols were followed. Results Sixty-one patients were included, mean age 46.4 years (SD 9.7), 27 % female. All patients were immunocompetent. No patient had received a previous epidural steroid injection or undergone previous back surgery. In total, microbiological cultures were positive in 28 (46 %) patients. Anaerobic cultures were positive in 26 (43 %) patients, and of these 4 (7 %) had dual microbial infections, containing both one aerobic and one anaerobic culture. No tissue specimens had more than two types of bacteria identified. Two (3 %) cultures only had aerobic bacteria isolated. In the discs with a nucleus with anaerobic bacteria, 80 % developed new MC in the vertebrae adjacent to the previous disc herniation. In contrast, none of those with aerobic bacteria and only 44 % of patients with negative cultures developed new MC. The association between an anaerobic culture and new MCs is highly statistically significant (P = 0.0038), with an odds ratio of 5.60 (95 % CI 1.51-21.95). Conclusion These findings support the theory that the occurrence of MCs Type 1 in the vertebrae adjacent to a previously herniated disc may be due to oedema surrounding an infected disc. The discs infected with anaerobic bacteria were more likely (P<0.0038) to develop MCs in the adjacent vertebrae than those in which no bacteria were found or those in which aerobic bacteria were found. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
Background: There is an inverse relationship between pocket depth and pocket oxygen tension with deep pockets being associated with anaerobic bacteria. However, little is known about how the host tissues respond to bacteria under differing oxygen tensions within the periodontal pocket. Aim: To investigate the effect of different oxygen tensions upon nuclear factor-kappa B (NF-?B) activation and the inflammatory cytokine response of oral epithelial cells when exposed to nine species of oral bacteria. Materials and Methods: H400 oral epithelial cells were equilibrated at 2%, 10% or 21% oxygen. Cells were stimulated with heat-killed oral bacteria at multiplicity of infection 10:1, Escherichia coli lipopolysaccharide (15 µg/ml) or vehicle control. Interleukin-8 (IL-8) and tumour necrosis factor-alpha (TNF-a) levels were measured by enzyme-linked immunosorbent assay and NF-?B activation was measured by reporter vector or by immunohistochemical analysis. Results: Tannerella forsythensis, Porphyromonas gingivalis and Prevotella intermedia elicited the greatest epithelial NF-?B activation and cytokine responses. An oxygen-tension-dependent trend in cytokine production was observed with the highest IL-8 and TNF-a production observed at 2% oxygen and lowest at 21% oxygen. Conclusions: These data demonstrate a greater pro-inflammatory host response and cell signalling response to bacteria present in more anaerobic conditions, and hypersensitivity of epithelial cells to pro-inflammatory stimuli at 2% oxygen, which may have implications for disease pathogenesis and/or therapy.
Resumo:
Optical coherence tomography (OCT) is a noninvasive three-dimensional interferometric imaging technique capable of achieving micrometer scale resolution. It is now a standard of care in ophthalmology, where it is used to improve the accuracy of early diagnosis, to better understand the source of pathophysiology, and to monitor disease progression and response to therapy. In particular, retinal imaging has been the most prevalent clinical application of OCT, but researchers and companies alike are developing OCT systems for cardiology, dermatology, dentistry, and many other medical and industrial applications.
Adaptive optics (AO) is a technique used to reduce monochromatic aberrations in optical instruments. It is used in astronomical telescopes, laser communications, high-power lasers, retinal imaging, optical fabrication and microscopy to improve system performance. Scanning laser ophthalmoscopy (SLO) is a noninvasive confocal imaging technique that produces high contrast two-dimensional retinal images. AO is combined with SLO (AOSLO) to compensate for the wavefront distortions caused by the optics of the eye, providing the ability to visualize the living retina with cellular resolution. AOSLO has shown great promise to advance the understanding of the etiology of retinal diseases on a cellular level.
Broadly, we endeavor to enhance the vision outcome of ophthalmic patients through improved diagnostics and personalized therapy. Toward this end, the objective of the work presented herein was the development of advanced techniques for increasing the imaging speed, reducing the form factor, and broadening the versatility of OCT and AOSLO. Despite our focus on applications in ophthalmology, the techniques developed could be applied to other medical and industrial applications. In this dissertation, a technique to quadruple the imaging speed of OCT was developed. This technique was demonstrated by imaging the retinas of healthy human subjects. A handheld, dual depth OCT system was developed. This system enabled sequential imaging of the anterior segment and retina of human eyes. Finally, handheld SLO/OCT systems were developed, culminating in the design of a handheld AOSLO system. This system has the potential to provide cellular level imaging of the human retina, resolving even the most densely packed foveal cones.