828 resultados para Análise de componentes independentes
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Load transportation in brazilian territory is made difficult by a deficient highway network, result of low maintenance and lack of government supervision. The problem aggravates when we consider the transportation of indivisible loads, mainly because the brazilian highways are not prepared for such task and few companies in Brazil have the necessary equipment suited for this kind of transport. In this dissertation it will be shown the analysis of a specific equipment to transport overweight indivisible loads, called hydraulic modular multi axle trailer. From an existing project (RB.04LE-01), manufactured and homologated in Brazil, it has been studied how the components in this trailer work so it could have been possible to elaborate a new model (RB.04LE-02), with two main objectives: reduction of costs and weight with subsequent increase in the liquid load for roadway transportation. The trailer’s components analyses were made utilizing the theory of fatigue strength of materials and finite element method with the von Misses criteria for a more safety when realizing the calculations
Resumo:
The soybean crop is considered a high expression around the world. In plant breeding programs, knowledge of genetic diversity is extremely important and in this context, are frequently used multivariate analyzes. Thus, the aim of the present study was to evaluate the genetic divergence between soybean crosses through multivariate techniques. In total, 16 crosses were evaluated, which were in the F2 generation of inbreeding. The evaluated characteristics were plant height at maturity, height of the first pod, number of branches per plant, number of pods per plant, number of nodes per plant, hundred seed weight, grain yield and oil content. For the analyzes was used Euclidean distance, methods of hierarchical clustering UPGMA and Ward and principal component analysis. Genetic distances estimated using Euclidean distance ranged from 1.24 to 8.13, with the smallest distance observed between crosses C1 and C4, and the greatest distance between the C2 crosses and C6. The methods UPGMA clustering and Ward met crossings in five different groups. The principal component analysis explained 86.2% of the variance contained in the original eight variables with three main components. The APM characters, NV, NR, NN, PG% and oil were the main contributors to genetic divergence among traits. Multivariate techniques were crucial to the analysis of genetic diversity, and the methods of Ward and UPGMA clustering and principal components have consistent results in this way, the simultaneous use of these tools in genetic analysis of crosses is indicated
Resumo:
This article presents an analysis of the book Amenina, o cofrinho e a vovó, by Cora Coralina (2009), as subsidy to relate intergenerational relationships between grandparents and grandchildren. Qualitative methodological path is formed by the use of some psychoanalytic concepts as reference for analyzing symbolic components present in the work. With the construction of a psychoanalytical study, the article highlights the importance of the construction of the symbolic links and intangible heritages transmitted between generations.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Geralmente, nos experimentos genótipo por ambiente (G × E) é comum observar o comportamento dos genótipos em relação a distintos atributos nos ambientes considerados. A análise deste tipo de experimentos tem sido abordada amplamente para o caso de um único atributo. Nesta tese são apresentadas algumas alternativas de análise considerando genótipos, ambientes e atributos simultaneamente. A primeira, é baseada no método de mistura de máxima verossimilhança de agrupamento - Mixclus e a análise de componentes principais de 3 modos - 3MPCA, que permitem a análise de tabelas de tripla entrada, estes dois métodos têm sido muito usados na área da psicologia e da química, mas pouco na agricultura. A segunda, é uma metodologia que combina, o modelo de efeitos aditivos com interação multiplicativa - AMMI, modelo eficiente para a análise de experimentos (G × E) com um atributo e a análise de procrustes generalizada, que permite comparar configurações de pontos e proporcionar uma medida numérica de quanto elas diferem. Finalmente, é apresentada uma alternativa para realizar imputação de dados nos experimentos (G × E), pois, uma situação muito frequente nestes experimentos, é a presença de dados faltantes. Conclui-se que as metodologias propostas constituem ferramentas úteis para a análise de experimentos (G × E) multiatributo.
Resumo:
Este trabalho apresenta resultados geoquímicos multielementares de sedimentos de corrente no estado de São Paulo, obtidos através do projeto institucional do Serviço Geológico do Brasil denominado \"Levantamento Geoquímico de Baixa Densidade no Brasil\". Dados analíticos de 1422 amostras de sedimento de corrente obtidos por ICP-MS (Inductively Coupled Plasma Mass Spectrometry), para 32 elementos químicos (Al, Ba, Be, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hf, K, La, Mg, Mn, Mo, Nb, Ni, P, Pb, Rb, Sc, Sn, Sr, Th, Ti, U, V, Y, Zn e Zr), foram processadas e abordadas através da análise estatística uni e multivariada. Os resultados do tratamento dos dados através de técnicas estatísticas univariadas forneceram os valores de background geoquímico (teor de fundo) dos 32 elementos para todo estado de São Paulo. A análise georreferenciada das distribuições geoquímicas unielementares evidenciaram a compartimentação geológica da área. As duas principais províncias geológicas do estado de São Paulo, Bacia do Paraná e Complexo Cristalino, se destacam claramente na maioria das distribuições geoquímicas. Unidades geológicas de maior expressão, como a Formação Serra Geral e o Grupo Bauru também foram claramente destacadas. Outras feições geoquímicas indicaram possíveis áreas contaminadas e unidades geológicas não cartografadas. Os resultados da aplicação de métodos estatísticos multivariados aos dados geoquímicos com 24 variáveis (Al, Ba, Ce, Co, Cr, Cs, Cu, Fe, Ga, La, Mn, Nb, Ni, Pb, Rb, Sc, Sr, Th, Ti, U, V, Y, Zn e Zr) permitiram definir as principais assinaturas e associações geoquímicas existentes em todo estado de São Paulo e correlacioná-las aos principais domínios litológicos. A análise de agrupamentos em modo Q forneceu oito grupos de amostras geoquimicamente correlacionáveis, que georreferenciadas reproduziram os principais compartimentos geológicos do estado: Complexo Cristalino, Grupos Itararé e Passa Dois, Formação Serra Geral e Grupos Bauru e Caiuá. A análise discriminante multigrupos comprovou, estatisticamente, a classificação dos grupos formados pela análise de agrupamentos e forneceu as principais variáveis discriminantes: Fe, Co, Sc, V e Cu. A análise de componentes principais, abordada em conjunto com a análise fatorial pelo método de rotação varimax, forneceram os principais fatores multivariados e suas respectivas associações elementares. O georreferenciamento dos valores de escores fatoriais multivariados delimitaram as áreas onde as associações elementares ocorrem e forneceram mapas multivariados para todo o estado. Por fim, conclui-se que os métodos estatísticos aplicados são indispensáveis no tratamento, apresentação e interpretação de dados geoquímicos. Ademais, com base em uma visão integrada dos resultados obtidos, este trabalho recomenda: (1) a execução dos levantamentos geoquímicos de baixa densidade em todo país em caráter de prioridade, pois são altamente eficazes na definição de backgrounds regionais e delimitação de províncias geoquímicas com interesse metalogenético e ambiental; (2) a execução do mapeamento geológico contínuo em escala adequada (maiores que 1:100.000) em áreas que apontam para possíveis existências de unidades não cartografadas nos mapas geológicos atuais.
Resumo:
Automatic detection of blood components is an important topic in the field of hematology. The segmentation is an important stage because it allows components to be grouped into common areas and processed separately and leukocyte differential classification enables them to be analyzed separately. With the auto-segmentation and differential classification, this work is contributing to the analysis process of blood components by providing tools that reduce the manual labor and increasing its accuracy and efficiency. Using techniques of digital image processing associated with a generic and automatic fuzzy approach, this work proposes two Fuzzy Inference Systems, defined as I and II, for autosegmentation of blood components and leukocyte differential classification, respectively, in microscopic images smears. Using the Fuzzy Inference System I, the proposed technique performs the segmentation of the image in four regions: the leukocyte’s nucleus and cytoplasm, erythrocyte and plasma area and using the Fuzzy Inference System II and the segmented leukocyte (nucleus and cytoplasm) classify them differentially in five types: basophils, eosinophils, lymphocytes, monocytes and neutrophils. Were used for testing 530 images containing microscopic samples of blood smears with different methods. The images were processed and its accuracy indices and Gold Standards were calculated and compared with the manual results and other results found at literature for the same problems. Regarding segmentation, a technique developed showed percentages of accuracy of 97.31% for leukocytes, 95.39% to erythrocytes and 95.06% for blood plasma. As for the differential classification, the percentage varied between 92.98% and 98.39% for the different leukocyte types. In addition to promoting auto-segmentation and differential classification, the proposed technique also contributes to the definition of new descriptors and the construction of an image database using various processes hematological staining
Resumo:
The classifier support vector machine is used in several problems in various areas of knowledge. Basically the method used in this classier is to end the hyperplane that maximizes the distance between the groups, to increase the generalization of the classifier. In this work, we treated some problems of binary classification of data obtained by electroencephalography (EEG) and electromyography (EMG) using Support Vector Machine with some complementary techniques, such as: Principal Component Analysis to identify the active regions of the brain, the periodogram method which is obtained by Fourier analysis to help discriminate between groups and Simple Moving Average to eliminate some of the existing noise in the data. It was developed two functions in the software R, for the realization of training tasks and classification. Also, it was proposed two weights systems and a summarized measure to help on deciding in classification of groups. The application of these techniques, weights and the summarized measure in the classier, showed quite satisfactory results, where the best results were an average rate of 95.31% to visual stimuli data, 100% of correct classification for epilepsy data and rates of 91.22% and 96.89% to object motion data for two subjects.
Resumo:
In this study, we examine the relationship between good corporate governance practices and the creation of value/performance of credit unions from 2010 to 2012. The objective was to create and validate a corporate governance index for credit unions, and to then analyse the relationship between good governance practices and the creation of value/performance. The problem question is: do good corporate governance practices provide value creation for credit unions? The research started by creating indices from factor analysis to identify latent dependent variables related to value creation and performance; next indices were created from the principal component analysis for the creation of independent latent variables related to corporate governance. Finally, based on panel data from regression models, the influence of the variables and indices related to corporate governance on the indices of value creation and performance was verified. Based on the research, it became evident that the Corporate Governance Index (IGC) is mainly impacted by Executive Management, with 40.31% of the IGC value, followed by the Representation and Participation dimension, with 34.07% of the IGC value. The contribution for academics was the creation of the Corporate Governance Index (IGC) applied for credit unions. As for the contribution to the system of credit unions, the highlight was the effectiveness of the mechanisms for economic-financial and asset management adopted by BACEN, credit unions and OCEMG.