986 resultados para Aminobutyric-acid Transporters


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vitamin C (ascorbic acid) is required for the synthesis of collagen, carnitine, catecholamine and the neurotransmitter norepinephrine. Vitamin C also plays an important role in protection against oxidative stress. Transporters for vitamin C and its oxidized form dehydroascorbate (DHA) are crucial to keep vitamin concentrations optimal in the body. The human SLC23 family consists of the Na(+)-dependent vitamin C transporters SVCT1 (SLC23A1) and SVCT2 (SLC23A2) and the orphan transporter SVCT3 (SLC23A3). Phylogenetically, the SLC23 family belongs to the nucleobase-ascorbate transporter family although no specificity for nucleobases has yet been demonstrated for the human members of this family. In fact, the SVCT1 and SVCT2 transporters are rather specific for ascorbic acid. SVCT1 is expressed in epithelial tissues such as intestine, where it contributes to the maintenance of whole-body ascorbic acid levels, whereas the expression of SVCT2 is relatively widespread either to protect metabolically active cells and specialized tissues from oxidative stress or to deliver ascorbic acid to tissues that are in high demand of the vitamin for enzymatic reactions. DHA, the oxidized form of ascorbic acid is taken up and distributed in the body by facilitated transport via members of the SLC2/GLUT family (GLUT1, GLUT3, and GLUT4). Although, the main focus of this review is on the SLC23 family of ascorbic acid transporters, transporters of DHA and nucleobases are also briefly discussed for completeness.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Heteromeric amino acid transporters (HATs) are the unique example, known in all kingdoms of life, of solute transporters composed of two subunits linked by a conserved disulfide bridge. In metazoans, the heavy subunit is responsible for the trafficking of the heterodimer to the plasma membrane, and the light subunit is the transporter. HATs are involved in human pathologies such as amino acidurias, tumor growth and invasion, viral infection and cocaine addiction. However structural information about interactions between the heavy and light subunits of HATs is scarce. In this work, transmission electron microscopy and single-particle analysis of purified human 4F2hc/L-type amino acid transporter 2 (LAT2) heterodimers overexpressed in the yeast Pichia pastoris, together with docking analysis and crosslinking experiments, reveal that the extracellular domain of 4F2hc interacts with LAT2, almost completely covering the extracellular face of the transporter. 4F2hc increases the stability of the light subunit LAT2 in detergent-solubilized Pichia membranes, allowing functional reconstitution of the heterodimer into proteoliposomes. Moreover, the extracellular domain of 4F2hc suffices to stabilize solubilized LAT2. The interaction of 4F2hc with LAT2 gives insights into the structural bases for light subunit recognition and the stabilizing role of the ancillary protein in HATs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Breast cancer is the most common malignancy among women in the world. Its 5-year survival rate ranges from 23.4% in patients with stage IV to 98% in stage I disease, highlighting the importance of early detection and diagnosis. 18F-2-Fluoro-2-deoxy-glucose (18F-FDG), using positron emission tomography (PET), is the most common functional imaging tool for breast cancer diagnosis currently. Unfortunately, 18F-FDG-PET has several limitations such as poorly differentiating tumor tissues from inflammatory and normal brain tissues. Therefore, 18F-labeled amino acid-based radiotracers have been reported as an alternative, which is based on the fact that tumor cells uptake and consume more amino acids to sustain their uncontrolled growth. Among those radiotracers, 18F-labeled tyrosine and its derivatives have shown high tumor uptake and great ability to differentiate tumor tissue from inflammatory sites in brain tumors and squamous cell carcinoma. They enter the tumor cells via L-type amino acid transporters (LAT), which were reported to be highly expressed in many cancer cell lines and correlate positively with tumor growth. Nevertheless, the low radiosynthesis yield and demand of an on-site cyclotron limit the use of 18F-labeled tyrosine analogues. In this study, four Technetium-99m (99mTc) labeled tyrosine/ AMT (α-methyl tyrosine)-based radiotracers were successfully synthesized and evaluated for their potentials in breast cancer imaging. In order to radiolabel tyrosine and AMT, the chelators N,N’-ethylene-di-L-cysteine (EC) and 1,4,8,11-tetra-azacyclotetradecane (N4 cyclam) were selected to coordinate 99mTc. These chelators have been reported to provide stable chelation ability with 99mTc. By using the chelator technology, the same target ligand could be labeled with different radioisotopes for various imaging modalities for tumor diagnosis, or for internal radionuclide therapy in future. Based on the in vitro and in vivo evaluation using the rat mammary tumor models, 99mTc-EC-AMT is considered as the most suitable radiotracer for breast cancer imaging overall, however, 99mTc-EC-Tyrosine will be more preferred for differential diagnosis of tumor from inflammation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human heteromeric amino acid transporters (HATs) are membrane protein complexes that facilitate the transport of specific amino acids across cell membranes. Loss of function or overexpression of these transporters is implicated in several human diseases such as renal aminoacidurias and cancer. HATs are composed of two subunits, a heavy and a light subunit, that are covalently connected by a disulphide bridge. Light subunits catalyse amino acid transport and consist of twelve transmembrane α-helix domains. Heavy subunits are type II membrane N-glycoproteins with a large extracellular domain and are involved in the trafficking of the complex to the plasma membrane. Structural information on HATs is scarce because of the difficulty in heterologous overexpression. Recently, we had a major breakthrough with the overexpression of a recombinant HAT, 4F2hc-LAT2, in the methylotrophic yeast Pichia pastoris. Microgram amounts of purified protein made possible the reconstruction of the first 3D map of a human HAT by negative-stain transmission electron microscopy. Here we report the important stabilization of purified human 4F2hc-LAT2 using a combination of two detergents, i.e., n-dodecyl-β-D-maltopyranoside and lauryl maltose neopentyl glycol, and cholesteryl hemisuccinate. The superior quality and stability of purified 4F2hc-LAT2 allowed the measurement of substrate binding by scintillation proximity assay. In addition, an improved 3D map of this HAT could be obtained. The detergent-induced stabilization of the purified human 4F2hc-LAT2 complex presented here paves the way towards its crystallization and structure determination at high-resolution, and thus the elucidation of the working mechanism of this important protein complex at the molecular level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Screening, Identification and Preliminary Investigation of Target Transporters in Pregnancy Pathologies. INTRODUCTION: Pre-eclampsia (PE), intrauterine growth restriction (IUGR) and gestational diabetes mellitus (GDM) are major sources of clinical morbidity and mortality in pregnant women worldwide. The mechanisms underlying these gestational diseases are complex and not yet fully understood, but one factor contributing to their development is impaired maternal-fetal nutrient transport. Therefore, we aimed to identify candidate membrane transporters involved in transplacental nutrient transfer associated with PE/IUGR or GDM. METHODS: Using in silico strategies, we analysed various gene expression data sets generated on different platforms focusing on solute carriers, ABC transporters and TRP channels in order to identify transporters that are differently expressed between patients and gestational age-matched controls. These bioinformatic analyses were combined with literature data to define a catalogue of target transporters that could be involved in the development of PE/IUGR or GDM. Transporters of interest were then analysed for gene expression using qRT-PCR in placental tissues of patients and controls. For validating the results on protein and functional level, we started to establish an in vitro assay using freshly isolated primary cytotrophoblast cells polarized on the Transwell® system. RESULTS: Using bioinformatics approaches, we initially identified 37 target membrane proteins which were mainly associated with the transport of amino acids, vitamins, and trace elements. At the current state of analysis, the amino acid transporters SLC7A7, SLC38A2, SLC38A5, and the thiamine transporter SLC19A3 showed significant differences in placental mRNA expression between controls and patients affected by PE and/or IUGR. Subsequent gene expression analysis in our in-house GDM placental tissue bank is still ongoing. CONCLUSIONS: Based on our in silico analyses, literature data and first follow-up in vitro validations, we were able to define potentially interesting candidate transporters implicated in PE/IUGR or GDM. To date, additional newly defined candidate targets are being analysed on mRNA level in PE/IUGR and GDM. Subsequent analyses on protein and functional level will reveal whether these targets could be of diagnostic or therapeutical interest in these pregnancy pathologies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Long N-terminal tails of amino acid transporters are known to act as sensors of the internal pool of amino acids and as positive regulators of substrate flux rate. In this study we establish that N-termini of amino acid transporters can also determine substrate specificity. We show that due to alternative trans splicing, the human pathogen Leishmania naturally expresses two variants of the proline/alanine transporter, one 18 amino acid shorter than the other. We demonstrate that the longer variant (LdAAP24) translocates both proline and alanine, whereas the shorter variant (∆18LdAAP24) translocates just proline. Remarkably, co-expressing the hydrophilic N-terminal peptide of the long variant with ∆18LdAAP24 was found to recover alanine transport. This restoration of alanine transport could be mediated by a truncated N-terminal tail, though truncations exceeding half of the tail length were no longer functional. Taken together, the data indicate that the first 18 amino acids of the negatively charged N-terminal LdAAP24 tail are required for alanine transport and may facilitate the electrostatic interactions of the entire negatively charged N-terminal tail with the positively charged internal loops in the transmembrane domain, as this mechanism has been shown to underlie regulation of substrate flux rate for other transporters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oligomeric assembly of neurotransmitter transporters is a prerequisite for their export from the endoplasmic reticulum (ER) and their subsequent delivery to the neuronal synapse. We previously identified mutations, e.g., in the gamma-aminobutyric acid (GABA) transporter-1 (GAT1), which disrupted assembly and caused retention of the transporter in the ER. Using one representative mutant, GAT1-E101D, we showed here that ER retention was due to association of the transporter with the ER chaperone calnexin: interaction with calnexin led to accumulation of GAT1 in concentric bodies corresponding to previously described multilamellar ER-derived structures. The transmembrane domain of calnexin was necessary and sufficient to direct the protein into these concentric bodies. Both yellow fluorescent protein-tagged versions of wild-type GAT1 and of the GAT1-E101D mutant remained in disperse (i.e., non-aggregated) form in these concentric bodies, because fluorescence recovered rapidly (t(1/2) approximately 500 ms) upon photobleaching. Fluorescence energy resonance transfer microscopy was employed to visualize a tight interaction of GAT1-E101D with calnexin. Recognition by calnexin occurred largely in a glycan-independent manner and, at least in part, at the level of the transmembrane domain. Our findings are consistent with a model in which the transmembrane segment of calnexin participates in chaperoning the inter- and intramolecular arrangement of hydrophobic segment in oligomeric proteins.