999 resultados para Ambiguity solution
Resumo:
The reconstruction of large defects (>10 mm) in humans usually relies on bone graft transplantation. Limiting factors include availability of graft material, comorbidity, and insufficient integration into the damaged bone. We compare the gold standard autograft with biodegradable composite scaffolds consisting of medical-grade polycaprolactone and tricalcium phosphate combined with autologous bone marrow-derived mesenchymal stem cells (MSCs) or recombinant human bone morphogenetic protein 7 (rhBMP-7). Critical-sized defects in sheep - a model closely resembling human bone formation and structure - were treated with autograft, rhBMP-7, or MSCs. Bridging was observed within 3 months for both the autograft and the rhBMP-7 treatment. After 12 months, biomechanical analysis and microcomputed tomography imaging showed significantly greater bone formation and superior strength for the biomaterial scaffolds loaded with rhBMP-7 compared to the autograft. Axial bone distribution was greater at the interfaces. With rhBMP-7, at 3 months, the radial bone distribution within the scaffolds was homogeneous. At 12 months, however, significantly more bone was found in the scaffold architecture, indicating bone remodeling. Scaffolds alone or with MSC inclusion did not induce levels of bone formation comparable to those of the autograft and rhBMP-7 groups. Applied clinically, this approach using rhBMP-7 could overcome autograft-associated limitations.
Resumo:
Problems involving the solution of advection-diffusion-reaction equations on domains and subdomains whose growth affects and is affected by these equations, commonly arise in developmental biology. Here, a mathematical framework for these situations, together with methods for obtaining spatio-temporal solutions and steady states of models built from this framework, is presented. The framework and methods are applied to a recently published model of epidermal skin substitutes. Despite the use of Eulerian schemes, excellent agreement is obtained between the numerical spatio-temporal, numerical steady state, and analytical solutions of the model.
Resumo:
Based on the eigen crack opening displacement (COD) boundary integral equations, a newly developed computational approach is proposed for the analysis of multiple crack problems. The eigen COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix. The interactions among cracks are dealt with by two parts according to the distances of cracks to the current crack. The strong effects of cracks in adjacent group are treated with the aid of the local Eshelby matrix derived from the traction BIEs in discrete form. While the relatively week effects of cracks in far-field group are treated in the iteration procedures. Numerical examples are provided for the stress intensity factors of multiple cracks, up to several thousands in number, with the proposed approach. By comparing with the analytical solutions in the literature as well as solutions of the dual boundary integral equations, the effectiveness and the efficiencies of the proposed approach are verified.
Resumo:
The productivity of the construction industry worldwide has been declining over the past forty years. One approach to improving the situation is by the introduction of lean construction. The IKEA model has also been shown to be beneficial when used in the construction context. A framework is developed in which the lean construction concept is embodied within the IKEA model by integrating Virtual Prototyping (VP) technology and its implementation is described and evaluated through a real-life case implementing the lean production philosophy. The operational flows of the IKEA model and lean construction are then compared to analyze the feasibility of IKEA-based lean construction. It is concluded that the successful application of the IKEA model in this context will promote the implementation of lean construction and improve the efficiency of the industry.
Resumo:
Reliable ambiguity resolution (AR) is essential to Real-Time Kinematic (RTK) positioning and its applications, since incorrect ambiguity fixing can lead to largely biased positioning solutions. A partial ambiguity fixing technique is developed to improve the reliability of AR, involving partial ambiguity decorrelation (PAD) and partial ambiguity resolution (PAR). Decorrelation transformation could substantially amplify the biases in the phase measurements. The purpose of PAD is to find the optimum trade-off between decorrelation and worst-case bias amplification. The concept of PAR refers to the case where only a subset of the ambiguities can be fixed correctly to their integers in the integer least-squares (ILS) estimation system at high success rates. As a result, RTK solutions can be derived from these integer-fixed phase measurements. This is meaningful provided that the number of reliably resolved phase measurements is sufficiently large for least-square estimation of RTK solutions as well. Considering the GPS constellation alone, partially fixed measurements are often insufficient for positioning. The AR reliability is usually characterised by the AR success rate. In this contribution an AR validation decision matrix is firstly introduced to understand the impact of success rate. Moreover the AR risk probability is included into a more complete evaluation of the AR reliability. We use 16 ambiguity variance-covariance matrices with different levels of success rate to analyse the relation between success rate and AR risk probability. Next, the paper examines during the PAD process, how a bias in one measurement is propagated and amplified onto many others, leading to more than one wrong integer and to affect the success probability. Furthermore, the paper proposes a partial ambiguity fixing procedure with a predefined success rate criterion and ratio-test in the ambiguity validation process. In this paper, the Galileo constellation data is tested with simulated observations. Numerical results from our experiment clearly demonstrate that only when the computed success rate is very high, the AR validation can provide decisions about the correctness of AR which are close to real world, with both low AR risk and false alarm probabilities. The results also indicate that the PAR procedure can automatically chose adequate number of ambiguities to fix at given high-success rate from the multiple constellations instead of fixing all the ambiguities. This is a benefit that multiple GNSS constellations can offer.
Resumo:
The effects of electron irradiation on NiO-containing solid solution systems are described. Partially hydrated NiO solid solutions, e. g. , NiO-MgO, undergo surface reduction to Ni metal after examination by TEM. This surface layer results in the formation of Moire interference patterns.
Resumo:
This chapter represents the analytical solution of two-dimensional linear stretching sheet problem involving a non-Newtonian liquid and suction by (a) invoking the boundary layer approximation and (b) using this result to solve the stretching sheet problem without using boundary layer approximation. The basic boundary layer equations for momentum, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The results reveal a new analytical procedure for solving the boundary layer equations arising in a linear stretching sheet problem involving a non-Newtonian liquid (Walters’ liquid B). The present study throws light on the analytical solution of a class of boundary layer equations arising in the stretching sheet problem.
Resumo:
Stochastic differential equations (SDEs) arise fi om physical systems where the parameters describing the system can only be estimated or are subject to noise. There has been much work done recently on developing numerical methods for solving SDEs. This paper will focus on stability issues and variable stepsize implementation techniques for numerically solving SDEs effectively. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A newly developed computational approach is proposed in the paper for the analysis of multiple crack problems based on the eigen crack opening displacement (COD) boundary integral equations. The eigen COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix to determine all the unknown CODs step by step. To deal with the interactions among cracks for multiple crack problems, all cracks in the problem are divided into two groups, namely the adjacent group and the far-field group, according to the distance to the current crack in consideration. The adjacent group contains cracks with relatively small distances but strong effects to the current crack, while the others, the cracks of far-field group are composed of those with relatively large distances. Correspondingly, the eigen COD of the current crack is computed in two parts. The first part is computed by using the fictitious tractions of adjacent cracks via the local Eshelby matrix derived from the traction boundary integral equations in discretized form, while the second part is computed by using those of far-field cracks so that the high computational efficiency can be achieved in the proposed approach. The numerical results of the proposed approach are compared not only with those using the dual boundary integral equations (D-BIE) and the BIE with numerical Green's functions (NGF) but also with those of the analytical solutions in literature. The effectiveness and the efficiency of the proposed approach is verified. Numerical examples are provided for the stress intensity factors of cracks, up to several thousands in number, in both the finite and infinite plates.
Resumo:
We develop a fast Poisson preconditioner for the efficient numerical solution of a class of two-sided nonlinear space fractional diffusion equations in one and two dimensions using the method of lines. Using the shifted Gr¨unwald finite difference formulas to approximate the two-sided(i.e. the left and right Riemann-Liouville) fractional derivatives, the resulting semi-discrete nonlinear systems have dense Jacobian matrices owing to the non-local property of fractional derivatives. We employ a modern initial value problem solver utilising backward differentiation formulas and Jacobian-free Newton-Krylov methods to solve these systems. For efficient performance of the Jacobianfree Newton-Krylov method it is essential to apply an effective preconditioner to accelerate the convergence of the linear iterative solver. The key contribution of our work is to generalise the fast Poisson preconditioner, widely used for integer-order diffusion equations, so that it applies to the two-sided space fractional diffusion equation. A number of numerical experiments are presented to demonstrate the effectiveness of the preconditioner and the overall solution strategy.
Resumo:
Fractional partial differential equations have been applied to many problems in physics, finance, and engineering. Numerical methods and error estimates of these equations are currently a very active area of research. In this paper we consider a fractional diffusionwave equation with damping. We derive the analytical solution for the equation using the method of separation of variables. An implicit difference approximation is constructed. Stability and convergence are proved by the energy method. Finally, two numerical examples are presented to show the effectiveness of this approximation.
Resumo:
A new optimal control model of the interactions between a growing tumour and the host immune system along with an immunotherapy treatment strategy is presented. The model is based on an ordinary differential equation model of interactions between the growing tu- mour and the natural killer, cytotoxic T lymphocyte and dendritic cells of the host immune system, extended through the addition of a control function representing the application of a dendritic cell treat- ment to the system. The numerical solution of this model, obtained from a multi species Runge–Kutta forward-backward sweep scheme, is described. We investigate the effects of varying the maximum al- lowed amount of dendritic cell vaccine administered to the system and find that control of the tumour cell population is best effected via a high initial vaccine level, followed by reduced treatment and finally cessation of treatment. We also found that increasing the strength of the dendritic cell vaccine causes an increase in the number of natural killer cells and lymphocytes, which in turn reduces the growth of the tumour.
Resumo:
Ambiguity resolution plays a crucial role in real time kinematic GNSS positioning which gives centimetre precision positioning results if all the ambiguities in each epoch are correctly fixed to integers. However, the incorrectly fixed ambiguities can result in large positioning offset up to several meters without notice. Hence, ambiguity validation is essential to control the ambiguity resolution quality. Currently, the most popular ambiguity validation is ratio test. The criterion of ratio test is often empirically determined. Empirically determined criterion can be dangerous, because a fixed criterion cannot fit all scenarios and does not directly control the ambiguity resolution risk. In practice, depending on the underlying model strength, the ratio test criterion can be too conservative for some model and becomes too risky for others. A more rational test method is to determine the criterion according to the underlying model and user requirement. Miss-detected incorrect integers will lead to a hazardous result, which should be strictly controlled. In ambiguity resolution miss-detected rate is often known as failure rate. In this paper, a fixed failure rate ratio test method is presented and applied in analysis of GPS and Compass positioning scenarios. A fixed failure rate approach is derived from the integer aperture estimation theory, which is theoretically rigorous. The criteria table for ratio test is computed based on extensive data simulations in the approach. The real-time users can determine the ratio test criterion by looking up the criteria table. This method has been applied in medium distance GPS ambiguity resolution but multi-constellation and high dimensional scenarios haven't been discussed so far. In this paper, a general ambiguity validation model is derived based on hypothesis test theory, and fixed failure rate approach is introduced, especially the relationship between ratio test threshold and failure rate is examined. In the last, Factors that influence fixed failure rate approach ratio test threshold is discussed according to extensive data simulation. The result shows that fixed failure rate approach is a more reasonable ambiguity validation method with proper stochastic model.
Resumo:
Global Navigation Satellite Systems (GNSS)-based observation systems can provide high precision positioning and navigation solutions in real time, in the order of subcentimetre if we make use of carrier phase measurements in the differential mode and deal with all the bias and noise terms well. However, these carrier phase measurements are ambiguous due to unknown, integer numbers of cycles. One key challenge in the differential carrier phase mode is to fix the integer ambiguities correctly. On the other hand, in the safety of life or liability-critical applications, such as for vehicle safety positioning and aviation, not only is high accuracy required, but also the reliability requirement is important. This PhD research studies to achieve high reliability for ambiguity resolution (AR) in a multi-GNSS environment. GNSS ambiguity estimation and validation problems are the focus of the research effort. Particularly, we study the case of multiple constellations that include initial to full operations of foreseeable Galileo, GLONASS and Compass and QZSS navigation systems from next few years to the end of the decade. Since real observation data is only available from GPS and GLONASS systems, the simulation method named Virtual Galileo Constellation (VGC) is applied to generate observational data from another constellation in the data analysis. In addition, both full ambiguity resolution (FAR) and partial ambiguity resolution (PAR) algorithms are used in processing single and dual constellation data. Firstly, a brief overview of related work on AR methods and reliability theory is given. Next, a modified inverse integer Cholesky decorrelation method and its performance on AR are presented. Subsequently, a new measure of decorrelation performance called orthogonality defect is introduced and compared with other measures. Furthermore, a new AR scheme considering the ambiguity validation requirement in the control of the search space size is proposed to improve the search efficiency. With respect to the reliability of AR, we also discuss the computation of the ambiguity success rate (ASR) and confirm that the success rate computed with the integer bootstrapping method is quite a sharp approximation to the actual integer least-squares (ILS) method success rate. The advantages of multi-GNSS constellations are examined in terms of the PAR technique involving the predefined ASR. Finally, a novel satellite selection algorithm for reliable ambiguity resolution called SARA is developed. In summary, the study demonstrats that when the ASR is close to one, the reliability of AR can be guaranteed and the ambiguity validation is effective. The work then focuses on new strategies to improve the ASR, including a partial ambiguity resolution procedure with a predefined success rate and a novel satellite selection strategy with a high success rate. The proposed strategies bring significant benefits of multi-GNSS signals to real-time high precision and high reliability positioning services.
Resumo:
Polycrystalline gold electrodes of the kind that are routinely used in analysis and catalysis in aqueous media are often regarded as exhibiting relatively simple double-layer charging/discharging and monolayer oxide formation/ removal in the positive potential region. Application of the large amplitude Fourier transformed alternating current (FT-ac) voltammetric technique that allows the faradaic current contribution of fast electron-transfer processes to be emphasized in the higher harmonic components has revealed the presence of well-defined faradaic (premonolayer oxidation) processes at positive potentials in the double-layer region in acidic and basic media which are enhanced by electrochemical activation. These underlying quasi-reversible interfacial electron-transfer processes may mediate the course of electrocatalytic oxidation reactions of hydrazine, ethylene glycol, and glucose on gold electrodes in aqueous media. The observed responses support key assumptions associated with the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis.